Browsing by Author "張博翔"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item 用於光學相干斷層掃描之基於深度學習和聯邦學習框架之視網膜層分割技術(2024) 張博翔; Chang, Po Hsiang在本研究中,我們提出了一種輕量級模型FPENet(α),以FPENet為基底,用於處理專為邊緣設備設計的 OCT 影像中視網膜層分割。視網膜層分割是眼科診斷的重要工具,但其在資源有限的邊緣設備上應用時存在計算成本和精度之間的瓶頸。FedLion(α)在使用 HCMS資料集、NR206資料集及OCT5K資料集進行訓練和測試時,實現了高精度和高效率。該模型經過最佳化,實現了精度和計算成本之間的平衡。FPENet(α)可以有效地捕捉不同尺度的特徵,同時大幅降低計算成本,非常適合部署在如Raspberry Pi等資源有限的邊緣設備上,其輕量化設計使其在計算資源和內存容量方面具有顯著優勢。聯邦學習的部分我們以FedLion為基礎添加了L2正則化與學習率遞減,提出FedLion(α),有效處理數據非獨立同分布的問題。數據顯示使用FPENet(α)與FedLion(α)進行聯邦學習,相較於原先只使用FPENet(α),在HCMS資料集平均DICE係數提升了0.7%,在NR206資料集提升了3.75%,在OCT5K資料集提升了9.1%。Item 運用聲音指數探討長期聲景監測的取樣方法(2020) 張博翔; Chang, Po-Hsiang聲景生態學在最近的十年蓬勃發展,關注在地景上聲音的組成,用以討論人為聲音的干擾和生物聲音多樣性隨時間改變等議題,提供另一種在生物群集尺度監測多樣性改變、自然擾動與人為影響的可能。由於近幾年錄音工具的快速發展,促使長期且大量收集聲景錄音的研究漸漸增加,也陸續證明聲景在生物群集的層級上能有效反映生物多樣性的變化。然而,長期監測的聲景研究間,並未有一致的錄音方法,且愈來愈大量的錄音資料在儲存與分析所需的軟、硬體資源上皆造成負擔。因此,本研究希望藉由臺灣北部聲景一整年的監測資料來找出最具有成本效益的錄音取樣方法,並探討錄音頻度與錄音覆蓋率對錄音取樣代表性的影響。我選定關渡濕地、陽明山天然林與東眼山人工林三種棲地樣點,架設SM4自動錄音機,自2018年7月到2019年6月每3分鐘取樣錄音1分鐘收集整年聲景監測資料,同時從2019年4月到8月收集每個月各十天的每日完整的聲景錄音。此研究以六種聲音指數數值在每日尺度下的五個百分位數(第5、25、50、75和95百分位數)量化每日聲景特徵,再分別比較利用19種錄音取樣與利用最密集錄音所量化得到的聲景特徵間的差異,評估各錄音取樣方法的代表性。我先計算每分鐘錄音檔的六種聲音指數,並在不同錄音取樣方法下計算各指數的各百分位數,再藉由bootstrapped resampling的方法,以單一指數的單一百分位數在各取樣與最密集錄音間的差異為重取單位,以一千次重取平均值的九十五信賴區間與0重疊與否,判斷各錄音方法和最密集錄音之間的聲景特徵量化結果是否一致。最後以30個指數百分位數(6個指數x 5個百分位數)中結果一致的數量,作為錄音取樣方法代表性的測量值,再分析取樣代表性隨錄音覆蓋率與錄音頻度的變化情形。除了整體的聲景比較外,我也分別針對單一棲地、季節,以及聲音群集的聲景進行相同的分析。整體聲景的研究結果顯示,隨錄音覆蓋率的降低,錄音取樣的代表性愈低,每小時錄音1次的錄音頻度相對較佳。在特定棲地、季節或聲音群集的聲景分析中,錄音覆蓋率愈高則取樣代表性有愈高的趨勢,而錄音頻度在各特定聲景間沒有一致的影響。各取樣方法的代表性在單一季節中較跨季節要高;在單一聲音群集的聲景,則不比跨群集分析擁有較高的代表性;單一棲地則與跨棲地相似。雖然很多因素可能影響長期聲景監測之錄音取樣方法代表性,本研究建議應避免過低的錄音覆蓋率,愈高的錄音覆蓋率原則上愈具聲景代表性,但為有效利用資源,可考量對監測目標之聲景進行前測,並在短期前測中考量季節的影響,避免單一季節的前測低估長期、跨季節監測下的最佳覆蓋率,在聲景資料收集、儲存、分析、研究或管理目標取捨下,找出符合一個地區的最佳錄音覆蓋率與錄音頻度。本研究透過長期且系統性的資料收集,發展具代表性錄音取樣的測試方法,找出長期聲景監測錄音取樣方法的代表性、提供特定聲景監測下的取樣建議,將有利於未來長期且自動排程錄音的聲景監測工作。