學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73896

Browse

Search Results

Now showing 1 - 9 of 9
  • Item
    利用超穎材料和多孔微結構實現被動太赫茲元件之研究
    (2024) 伍姵蓉; Wu, Pei-Jung
    在光學領域中,傳統的光學元件,包括濾波器、吸收器和感測器,通常需要經過繁複且耗時的製程製作。然而,由於超材料具有卓越的特性,可以透過圖形設計實現其功能。在太赫茲波段的應用中,超材料工作頻段的可調製性引起了廣泛關注。此外,於太赫茲波段下所設計超材料的晶胞大小尺寸可以透過成熟的黃光微影製程實現,有助於改善太赫茲波段下光學應用的不足。本論文主要分為三個部分。第一部分探討了利用電控方式調製石墨烯帶,並結合多個方形環組成的超材料結構,形成太赫茲濾波器。透過調整方形環的尺寸,實現了多頻段濾波功能。此外,透過施加偏壓於石墨烯帶,能夠改變石墨烯的費米能階,進而將多頻太赫茲濾波器調整為單頻濾波器,可作為開關,對於6G通訊波段的發展具有潛在應用價值。第二部分著重於設計超材料作為超寬頻太赫茲吸收器,其在2.95至4.96 THz頻率範圍下表現出高達90 %的吸收率。同時,結合電控方式調製石墨烯,使吸收器的吸收頻段藍移,最高吸收頻率可達5.97 THz。值得注意的是,當改變入射角時,吸收體在大範圍的角度下仍能保持優異的吸收性能,表明此吸收器對於入射角具有不敏感性,有望實際應用於太赫茲偵測器。第三部分將太赫茲超材料感測器與多孔材料結合,用於氣體感測器。以可吸收一氧化氮之薄膜為例,利用鈣鈦礦結構鈦酸鋅與還原氧化石墨烯氣凝膠形成多孔材料,與超材料整合成超材料氣體感測器進行量測。在室溫下對於50 %的一氧化氮具有16.4 %的響應,且對不同氣體的具有高度選擇性,將實現室溫下以非接觸式氣體量測提供的可能,有助於生物醫學與穿戴式裝置的發展。第四部份將利用太赫茲超材料檢測極性液體,超材料上放置的目標材料達到一定厚度時,共振頻率變化飽和。為了有效利用超材料進行量測,需要考慮目標材料的光學特性,評估其可適用的最大厚度。超材料研究使得對薄膜介電常數深入研究成為可能,在此無需耗費大量材料。擴大檢測範圍允許深入研究各種極性液體對THz波的高度吸收的介電特性。這項研究有望克服THz波受極性液體吸收的限制,並在生物樣本檢測方面取得實質進展。總結而言,本論文致力於不同種不同太赫茲元件的開發,包括電控調製石墨烯超材料濾波器、具廣角不敏感吸收性的石墨烯超材料吸收器,以及高度選擇性的一氧化氮氣體感測器,與液體感測器。這些應用驗證了超材料在太赫茲波段的獨特光學特性,對太赫茲波段的應用將產生深遠的影響。
  • Item
    發展利用非金屬材料之THz波前與振幅調製技術
    (2024) 韋怡安; Wei, Yi-An
    太赫茲輻射具有眾多獨特的特性,包括光子能量低、對金屬的高反射性、對水表現出強烈的吸收,以及對大多數介電材料表現出極高的穿透性。這些特性賦予太赫茲輻射在多個研究領域中的優越性。太赫茲輻射可提供有關分子之間低頻震動模式、氣體的旋轉模式和晶格內聲子模式等分子訊息,進而使太赫茲的吸收頻譜能夠清晰地分析同分異構物的組成模式。因此,太赫茲輻射在各種研究和實際應用中得到廣泛應用。然而,由於太赫茲波段相關設備仍相對缺乏,因此低耗損且高效的元件變得尤為重要。為了解決這一問題,本研究針對波前和振幅的調製分別使用了不同的方法。在波前的調製方面,採用了三種主要方法,包括透鏡、螺旋相位板以及超穎介面。透鏡利用造鏡者公式並搭配3D列印技術,透過常見3D列印材料的改良,最後所選用的材料為光固化樹脂混合30%的Al2O3,成功地製造耗損較小的太赫茲元件並有效的降低製造成本,可應用於多種系統架設及應用。隨著未來6G通訊波段提供更高速度、更大容量和極低延遲的可能性,相關研究正積極進行。在這方面,具有軌道角動量的螺旋光束展現出相當大的應用潛力。螺旋光束的拓樸數可以是任意整數,且不同拓樸數的螺旋光束呈現正交性,適用於增加通訊通道。因此要能產生這種具有軌道角動量的螺旋光束就非常重要,本研究利用了兩種方式來實現,分別是螺旋相位板以及超穎介面。螺旋相位板利用3D列印方式製造,所選用的材料與製作透鏡時相同,形成可以隨著空間旋轉的螺旋階梯狀結構,進而產生相位隨著空間旋轉的環形光斑。而超穎介面則利用表面電漿共振及Pancharatnam-Berry (PB) phase的原理,設計出漏斗結構的超穎表面,達到空間上不同相位分佈的狀態,進而實現螺旋狀的波前。在振幅的調製方面,有兩種主要方法。首先,利用磁流體其優異的磁致特性進行調製。這種方式在施加弱磁場時,磁流體中的奈米粒子會排列成鏈狀分布。透過調整磁場大小,使得鏈狀結構的緊密程度發生變化,當鏈狀之間的間距與入射光達到共振時,即實現了振幅的調製效果。其次,受到磁流體和3D列印技術的啟發,提出了第二種方式。這種方法將鏈狀結構類比為一維光子晶體,類似光柵結構。由於太赫茲對於許多介電材料有著高穿透的特性,通過適當設計結構尺寸並搭配合適材料,使其能與入射光產生高品質因子的共振。因此這種方法可以成為一種設計簡單、製程單純的元件製作方式,並在振幅的調製方面發揮作用。總而言之,這項研究不僅探討了太赫茲調製器在波前和振幅方面的特性與設計,更成功地實際製作出符合成品來匹配模擬結果。這一系列有效的調製方法為太赫茲技術的發展和應用開啟了嶄新的前景。
  • Item
    反射式太赫茲光譜於多頻感測器與化合物半導體光電特性量測之應用
    (2023) 陳裕昇; Chen, Yu-sheng
    近年來太赫茲的研究非常興盛,太赫茲時域光譜(THz-TDS)因具有非接觸和非破壞性等優點,被廣泛的應用在各種材料量測上,但是對於一些高摻雜的化合物半導體以及超材料吸收器等光無法穿透的材料,反射式的系統就顯得相當重要。於是我們利用反射式太赫茲時域光譜(THz-TDRS)量測高摻雜化合物半導體的複數折射率以及電導率,並利用Drude-Smith model來擬合電導率,求出材料的電漿頻率與載子散射時間,並用這兩個參數得到材料的載子濃度與載子遷移率。我們還設計了一種可以用於反射式太赫茲時域光譜量測的超材料,近年來超材料因其卓越調製太赫茲的能力而備受關注,但由於其晶胞尺寸大小的關係,使得太赫茲超材料受到傳統微奈米製程的限制,傳統的製程有著步驟繁瑣、耗時以和昂貴的設備等問題,為了克服這些困難,我們提出了一種基於3D列印設計的太赫茲超材料感測器,並利用簡單的雙狹縫設計達到多頻感測器的功能,我們利用有限元素法模擬了超材料的吸收頻譜、電磁場的分佈還有對於血液成分的感測能力,並且說明了元件製程的可能性。本論文主要分為兩個部分,第一個部分主要為第三代半導體的光電特性量測,第二部分為基於3D列印的超材料感測器模擬。
  • Item
    利用雙色飛秒脈衝激發凝態物質之兆赫波輻射源探討
    (2021) 阮荺淇; Ruan, Yun-Chi
    目前常見的兆赫波激發源及機制,如:使用脈衝激發並施加電壓使自由載子加速的光導天線、以二階非線性當中的光整流效應產生兆赫波的ZnTe晶體、以及基頻與倍頻光同時激發空氣之三階非線性特性所產生之兆赫波。而在非線性光學中可以得知,只要光強足夠,任何材料皆可以被激發出三階非線性的特性,故此研究工作利用雙色脈衝激發材料三階非線性特,藉由四波整流效應產生兆赫波,其中針對各種材料之三階非線性特性進行模擬,探討其對兆赫波激發源的發展及兆赫波顯微術繞射極限的突破的展望性。本篇工作是以中心波段為800奈米的脈衝,經過倍頻晶體後產生400奈米的脈衝,紅光與藍光同時作用於材料上,激發材料三階非線性特性,以四波整流的機制產生兆赫波。我們模擬各個材料產生之兆赫波電極化分佈,並針對各個材料產生之兆赫波電極化,與基頻光在ZnTe中光整流效應所產生之兆赫波電極化做比較。接著計算各材料的三階非線性效率,模擬所選之材料產生的兆赫波偏極化,進而了解什麼樣的材料適合以雙色光產生兆赫波。
  • Item
    石墨烯於混合光聲生物感測器和太赫茲電漿波導之應用
    (2021) 許永周; Hsu, Young-Chou
    隨著科技發展進步,人類對電磁頻譜上最後一塊拼圖「太赫茲」越來越受重視,因此太赫茲的元件發展也顯得非常重要,本篇論文結合二維材料石墨烯的費米能階具有調變性的特點,利用有限元素法進行二維的石墨烯表面電漿子的元件設計與應用,並且分成兩個部分進行研究:第一部分石墨烯表面電漿波導設計。由於石墨烯的能帶結構特殊因此又稱為半金屬,能夠產生表面電漿在石墨烯與介電質之間傳遞;又因為石墨烯的邊界條件使橫向電波(Transverse Electric Wave, TE)也能夠產生表面電漿在石墨烯表面,不同於傳統只有在橫向磁波(Transverse Magnetic Wave, TM)才能夠在金屬表面產生表面電漿;並探討其傳遞距離(Propagation Length)與衰減深度(Decay Length)與TM極化表面電漿比較。 第二部分混合光聲生物感測器。由於石墨烯混合電漿生物感測器只能針對樣品的折射率做測量,所以當兩個待測物的折射率相同時會無法分辨兩者待測物,因此結合聲波於感測器上,利用不同待測物所固有的應力係數區分待測物,以達到更有效率的辨識待測物來源。
  • Item
    高熵合金薄膜之太赫茲複數電學與光學常數之探討
    (2021) 宋易乘; Sung, Yi-Chen
    高熵合金的想法起源於1995年,有別於以一種主要金屬再另外添加微量金屬的傳統合金(如:鋼為大量的鐵加上少量的碳),反而是利用多主元素的高熵效應來設計和金,來開發更多元的材料以符合新的科技發展需求。太赫茲光譜不僅對不同物質產生特定的圖譜,也是未來6G通訊的波段,開發太赫茲的相關元件勢在必行,為避免在檢測過程中對高熵合金樣品造成表面上的損傷,本研究採用太赫茲時域光譜系統來進行高熵合金在太赫茲頻譜下之光學常數與電導率的非接觸式量測。NbMoTaW這類的耐火高熵合金在2010年被美國空軍實驗室(AFRL)首次提出,目的是希望能找出在高溫能突破耐溫合金如超合金的溫度極限。本研究著重於Nb、Mo、Ta、W四個元素以三種不同組成比例(三種分別為Nb25Mo25Ta25W25、Nb15Mo15Ta35W35、Nb15Mo35Ta15W35)時,在奈米等級不同厚度下表現的光學特性與電導特性相互比較。研究結果顯示,在等比例的高熵合金Nb25Mo25Ta25W25薄膜與大多數的金屬薄膜一樣,除了折射率與吸收係數會隨著厚度的增加而上升之外,電導率亦隨著厚度的增加而上升。而三種不同元素比例的高熵合金Nb25Mo25Ta25W25、Nb15Mo15Ta35W35、Nb15Mo35Ta15W35在厚度相同時,其電導率會依照Mo、W兩者比例增加而上升,電導率的排序為Nb15Mo35Ta15W35> Nb25Mo25Ta25W25> Nb15Mo15Ta35W35 。
  • Item
    高熵合金在兆赫波段之導電率和光學常數探討及其應用
    (2019) 呂佳燕; Lu, Chia-Yen
    金屬材料對人類的發展一直都扮演著不可或缺的角色。在過去為了提升金屬的某些特性,我們以一種主要金屬,再添加少量的元素改變其原來性質,使之優化並可應用在更多更廣的領域。隨著添加越多難易度也越高,甚至合金也越容易脆化。近年來,由於高熵合金的出現,更開啟了設計新材料的方向。 「熵」在物理學裡指亂度,在一主要金屬裡混合越多元素意指亂度越高,一般定義由五種或五種以上的元素所構成的合金亦可稱為高熵合金。除了可以合成我們一般所認知的塊材外,亦能以固溶基體的方式呈現。由於至今精進的技術,使之劃分為兩代;第一代屬於各元素約等原子比,第二代則是元素間非等原子比,兩代差異在於後者可以提供更優越的性能。不同元素、不同比例、不同尺度下的高熵反應會造成有不同的物理特性,例如:磁特性、高強度、高硬度、耐磨性、耐高溫、耐腐蝕…等。 現今在兆赫波光譜可快速得到很多光學資訊。例如:折射率、光電導率、電子遷移率…等。高熵合金有千變萬化的可能性,為了方便提升量測效率,這次想藉由THz來探討此材料的特性。THz量測的好處在於非接觸性、光子能量低(4.1meV)且快速。對於分部不均勻的高熵合金來說,傳統接觸性的量測方法,可能在量測過程中破壞材料結構,因此可以透過此非接觸性的方法量測。由於THz對金屬有很強的反射,所以本論文是用奈米等級的NbMoTaW薄膜,使用DC磁控濺鍍的方式鍍在高阻質的矽基板上作為樣品,針對不同的厚度去做量測。再利THz打在此金屬薄膜上,看訊號相位、振幅的變化,經運算成電導率、穿透率與探討其性質。