教師著作
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/31268
Browse
2 results
Search Results
Item A 25-75-GHz broadband Gilbert-cell mixer using 90-nm CMOS technology(IEEE Microwave Theory and Techniques Society, 2007-04-01) Jeng-Han Tsai; Pei-Si Wu; Chin-Shen Lin; Tian-Wei Huang; John G.J. Chern; Wen-Chu Huang; Huei WangA compact and broadband 25-75-GHz fully integrated double-balance Gilbert-cell mixer using 90-nm standard mixed-signal/radio frequency (RF) CMOS technology is presented in this letter. A broadband matching network, LC ladder, for Gilbert-cell mixer transconductance stage design is introduced to achieve the flatness of conversion gain and good RF port impedance match over broad bandwidth. This Gilbert-cell mixer exhibits 3plusmn2dB measured conversion gain (to 50-Omega load) from 25 to 75GHz with a compact chip size of 0.30mm2. The OP1 dB of the mixer is 1dBm and -4dBm at 40 and 60GHz, respectively. To the best of our knowledge, this monolithic microwave integrated circuit is the highest frequency CMOS Gilbert-cell mixer to dateItem Design and analysis of a 44-GHz MMIC low-loss built-in linearizer for high-linearity medium power amplifiers(IEEE Microwave Theory and Techniques Society, 2006-06-01) Jeng-Han Tsai; Hong-Yeh Chang; Pei-Si Wu; Yi-Lin. Lee; Tian-Wei Huang; Huei WangA 44-GHz monolithic microwave integrated circuit (MMIC) low-loss built-in linearizer using a shunt cold-mode high-electron mobility transistor (HEMT), based on the predistortion techniques, is presented in this paper. The proposed cold-mode HEMT linearizer can enhance the linearity of the power amplifier (PA) with a low insertion loss (IL<2 dB), a compact die-size, and no additional dc power consumption. These advantages make the linearizer more suitable for millimeter-wave (MMW) applications. The physical mechanism of the gain expansion characteristics of the proposed linearizer is analyzed. A systematic design procedure for a low-loss linearizer is developed, which includes: 1) insertion loss minimization through a device-size selection and 2) linearity optimization through a two-tone test. To demonstrate the general usefulness of the proposed linearizer, the linearizer was applied to a two-stage 44-GHz MMIC medium PA and a commercial MMW PA module. After linearization, the output spectrum regrowth is suppressed by 7-9 dB. To keep the adjacent channel power ratio below -40 dBc, the output power has been doubled from 15 to 18 dBm at 44 GHz. The error vector magnitude of the 16-quadrature amplitude modulation signal can be reduced from 6.11% to 3.87% after linearization. To the best of our knowledge, this is the first multistage MMW PA with a low-loss built-in linearizer