教師著作

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/31268

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Image-Based System for Measuring Objects on an Oblique Surface
    (2010-05-06) Chen-Chien Hsu; Wei-Yen Wang; Yin-Yu Lu; Ming-Chih Lu
    This paper presents an image-based framework for measuring target objects on an oblique plane by using a single CCD camera and two parallel laser projectors beside the camera. Because of the alignment of the laser beams which form in parallel with the optical axis, projected spots in the image can be processed to establish relationships between distance and pixel counts between the projected spots in the image. Based on simple geometrical derivations without complex image processing, the proposed approach can measure the photographing distance, the distance between two arbitrary points on the oblique surface, and the incline angle. Experiment results have demonstrated the effectiveness of the proposed approach in measuring distant objects on an oblique plane.
  • Item
    Distance and Angle Measurement of Distant Objects on an Oblique Plane Based on Pixel Variation of CCD Image
    (2010-05-06) Ming-Chih Lu; Chen-Chien Hsu; Yin-Yu Lu
    This paper presents an image-based system for measuring target objects on an oblique plane based on pixel variation of CCD images for digital cameras by referencing to two arbitrarily designated points in image frames. Based on an established relationship between the displacement of the camera movement along the photographing direction and the difference in pixel counts between reference points in the images, photographing distance between the camera and an object on the oblique target plane can be calculated via the proposed method.
  • Item
    Distance and Angle Measurement of Distant Objects on an Oblique Plane Based on Pixel Number Variation of CCD Images
    (Institute of Electrical and Electronics Engineers (IEEE), 2011-05-01) Chen-Chien Hsu; Ming-Chih Lu; Yin-Yu Lu
    This paper presents an image-based system for measuring target objects on an oblique plane based on pixel number variation of charge-coupled device images for digital cameras by referencing to two arbitrarily designated points in the image frame. Based on an established relationship between the displacement of the camera movement along the photographing direction and the variation in pixel counts between the reference points in the images, photographic distance and incline angle for objects lying on an oblique plane can be calculated via the proposed method. As a real-case application of the proposed approach, 2-D localization of target objects in robot soccer competitions is also demonstrated to show the effectiveness of the proposed approach. To allow the use of widely available digital zoom cameras for ranging and localization by the proposed method, a parameter equivalent to the displacement due to the camera movement is also investigated and derived in this paper.
  • Item
    Image-Based System for Measuring Objects on an Oblique Plane and It Applications in Two-Dimensional Localization
    (IEEE Sensors Council, 2012-06-01) Ming-Chih Lu; Chen-Chien Hsu; Yin-Yu Lu
    This paper presents an image-based framework for measuring target objects on an oblique plane by using a single charge-coupled device camera and two laser projectors mounted in parallel beside the camera. Because of the alignment of the laser beams, which form in parallel with the optical axis of the camera, laser-projected spots in the image can be processed to establish relationships between distance and pixel counts of the projected spots in the image. Based on simple geometrical derivations without complex image processing, the proposed approach can successfully measure the photographic distance, the distance between two arbitrary points on the oblique surface, and the incline angle of the oblique surface. Thanks to its ranging capability, the proposed image-based measuring system is further applied to localize objects on a ground surface in addition to depth measurement. To demonstrate the feasibility of the proposed approach for practical applications, we propose a surveillance framework under which a pan-tilt-zoom camera tracks objects in an environment according to the 2-D localization results obtained via the proposed method. Experimental results have demonstrated the effectiveness of the proposed approach in distance measurement, as well as localization of objects on an oblique plane.