學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73902
Browse
Item 太平洋赤道洋流系統之研究(2009) 王儷樵; Li-Chiao Wang太平洋(Pacific Ocean)赤道地區(140°E~80°W,20°N~20°S),主要的洋流包括:由東向西流的北赤道洋流(North Equatorial Current, NEC)、南赤道洋流(South Equatorial Current, SEC),以及由西向東流的北赤道反流(North Equatorial Countercurrent, NEC)、赤道潛流(Equatorial undercurrent, EUC)。這些洋流主要生成機制和風力、柯氏力及壓力梯度力和有關。 本論文使用GODAS(Global Ocean Data Assimilation System)模式1988~2007年的月平均資料,來研究赤道太平洋的主要洋流在正常年、聖嬰年及反聖嬰年夏冬兩季的流況變化。由模式結果我們發現,夏季時NECC與SECn緯度位置相近,因此遇上SECn後有分支北移的現象,NECC分支點的位置在聖嬰年偏東,正常年次之,反聖嬰年偏西。冬季時NECC比SECn要偏北,因此不會和SECn相遇。另外,正常年冬季出現於SECs南邊的SECC,在反聖嬰年冬季流速增強,到了聖嬰年冬季時則消失不見。 不論是正常年、聖嬰年或反聖嬰年的夏季,NEC自90°W有NECC往北匯入,流至110°W又往回匯入NECC,因此在90°W~110°W之間形成一個環流(Costa Rika Dome)。到了冬季,NEC在110°W沒有往回匯入NECC的現象,故冬季時此環流並不存在。Item 比較由一般至相對極端之季節預報技術(2010) 鄭鈺靖; Yu-Ching Cheng極端的季節性變化,通常對我們的環境會造成很大的影響,所以評估各海氣耦合模式對於極端事件預報技術的特性與準確度,便可以幫助我們去修正各個模式間的誤差,以求建立更為準確的模式系統提供氣候模擬及預報。 本研究將利用DEMETER計畫中的多模式預報系統的模式資料,與世界降雨氣候計畫(Global Precipitation Climatology Project, GPCP)的觀測資料,分別利用決定性預報分析使用 Extreme Dependency Score (EDS)此種技術得分及機率性預報分析使用Relative Operating Characteristics(ROC)技術得分兩類,來針對各模式的預報技術能力作探討及分析。 在作氣候模式預報技術分析前會針對我們氣候模式的特性,將使用所技術得分的繪圖或計算方式作修正,之後再利用修正過的技術得分來作分析。 研究發現當預報技術隨著狀況由一般到相對極端時,氣候模式預報的技術是有相當程度提升,但在決定性預報中當預報的狀況達到相對極端小於4.5%後,模式的預報技術則有急遽下降的趨勢。Item 聖嬰在全球暖化下之改變(2013) 黃姿瑛; Zi-Ying Huang全球暖化對聖嬰的影響看法仍相當分歧,目前尚無一致結論。本研究透過比較CMIP3模式中GFDL-CM2.1模式及UKMO-HADCM3模式對不同氣候情境模擬,探討暖化對聖嬰的影響,旨在歸納影響(1)兩類型聖嬰(即,中太平洋聖嬰與東太平洋聖嬰)出現頻率與(2)極端強聖嬰振幅的關鍵因子。研究中選擇GFDL-CM2.1模式及UKMO-HADCM3模式的原因是,兩個模式在現今氣候模擬(20C3M)對赤道東太平洋海溫的統計特徵(如平均態、變異度與偏度)皆與觀測非常相似,但在未來氣候模擬(A1B)則出現完全相反的結果。 在工業革命前控制實驗(pre-industrial control experiment,PICTL)長期模擬顯示,GFDL-CM2.1模式與UKMO-HADCM3模式皆顯示或中太平洋聖嬰(Central Pacific El Niño,簡稱CP-EN)偏多時期,赤道東太平洋平均場之斜溫層深度(或海溫、海水高度)變淺(小),東太平洋聖嬰(Eastern-Pacific El Niño,簡稱EP-EN)偏多時期則反之。此外,研究發現平均場的計算若移除聖嬰與反聖嬰年,與不移除聖嬰年與反聖嬰年的結果相反(即,CP-EN偏多時期赤道東太平洋斜溫層深度變深)。此結果表示,聖嬰對平均場的調整作用不容忽略。 A1B模擬與PICTL實驗比較發現,平均場在赤道西-東太洋斜溫層厚度的斜率變化對兩類型聖嬰出現頻率具關鍵性影響。相較於PICTL實驗,UKMO-HADCM3模式在A1B模擬,平均場之赤道西-東太平洋斜溫層厚度之斜率明顯變小,由於赤道中太平洋斜溫層厚度變淺,有利於斜溫層-海溫回饋,CP-EN出現頻率明顯增多。然而,上述平均場變化在GFDL-CM2.1模式並不明顯,CP-EN出現頻率,因此未明顯增多。 至於暖化對極端強聖嬰振幅的影響,GFDL-CM2.1在A1B模擬顯著減弱,但UKMO-HADGEM1模式反而增強。GFDL-CM2.1極端強聖嬰振幅減弱,歸納原因為:(1)風-海溫回饋機制,(2)斜溫層-海溫回饋機制與(3)IOD-ENSO回饋機制的減弱。UKMO-HADGEM1模式,極端強聖嬰振幅在A1B模擬增加則歸納與赤道大西洋海溫變冷有關。