學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73898

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    應用深度學習演算法之海報文字區域檢測實驗
    (2022) 盧聖侃; Lu, Sheng-Kan
    近年來,數位化的廣泛應用也促使了互聯網的發展。伴隨著互聯網技術日新月異,大量的社交媒體和其他應用程式不斷推陳出新,數位圖像已然成為社會中一種主要的資訊獲取來源。在當今資訊量爆炸的社會裡,海報作為生活中最常見的資訊傳達媒介,成為生活中處處可見的藝術表現方式並充斥在現代人的生活當中。若能提出一個檢測方法來辨識海報中的文字區域,不僅能提取海報文字區域作為後續分析的資訊,也能使海報在網路中的更容易被使用者檢索。隨著深度學習的興起,越來越多研究者利用深度學習來完成影像分析及物件檢測。而其中,Mask R-CNN 與 Yolov4 分別代表著 two-stage 與 one-stage 的目標檢測方法,無論是在物件的瑕疵檢測、人臉的偵測、交通路況的偵測等領域都有很好的研究結果。然而,以上大多都是檢測自然場景物件,較少應用在平面設計的領域之中。基此,為了提取海報圖像的文字區域,本研究將訓練 Mask R-CNN 與Yolov4 兩個檢測方法,分別來對海報圖像文本進行檢測。實驗結果顯示,Mask R-CNN檢測文字區域的 mAP50 可達 79.0%;Yolov4 檢測文字區域的 mAP50 也高達 85.1%。意味著兩個目標檢測方法都可在海報版面中,定位出海報中文字區域,提供未來作為文字辨識的數據。而對比 Mask R-CNN 與 Yolov4 兩種演算法的輸出結果後,發現 Yolov4 可以更準確地檢測文字區域,並且較不受海報因色彩、文字大小、文字間隔等設計因素影響到檢測結果。
  • Item
    深度學習融入有價證券之微結構真偽辨識-以振興三倍券為例
    (2021) 邱曉昱; Chiu, Hsiao-Yu
    身處在充滿人工智慧結晶的時代,我們視科技為理所當然,並享受著其帶來的便利與生活品質,然而在這項技術逐漸嶄露頭角之際,各類威脅也倚靠著科技滋長茁壯。政府2020年為復甦經濟所發放之「振興三倍券」於使用期限內曾傳出偽造事件,為了能精準判別整張有價證券真偽,本研究主旨為使用深度學習CNN (Convolutional Neural Network ),有效且快速辨別真偽振興三倍券微結構取樣影像組合,進而依此推測判別出整張紙券真偽,同時以減少訓練樣本數達到高辨識率為目標,取得最佳學習尺寸組合,最後歸類分析錯誤辨識微結構印刷類型並於原券定位,為此次研究目的。首先將面額200元及500元之紙本振興三倍券掃描定義為掃描真券;與之複印後再次掃描為模擬偽券,後以尺寸32×32、64×64、96×96及128×128 pixels進行隨機局部不完全重複取樣,建立訓練及測試影像資料集,分組後個別輸入CNN模型訓練測試,得出辨識正確率與錯誤辨識影像於原券上之分佈。實驗結果顯示,依照各組辨識正確率之比例及趨勢可成功推測判別整張振興三倍券真偽,且印證研究使用之CNN模型不需學習全尺寸之局部影像組合,僅訓練最大及最小尺寸之影像資料集,即可達到預期之顯著辨識成效;至於透過錯誤辨識分佈的統整,發現無論掃描真券或模擬偽券的局部取樣,所辨識的錯誤特徵皆有較高的比例集中於鈔券的凹版印刷處。本研究提出一個不需藉由專業人士判斷有價證券影像,基於CNN模型即可有效辨別鈔券局部微結構真偽的方法,並以此實驗結果為基礎,未來可結合手機拍攝取樣,推測於拍攝指定距離範圍內之鈔券影像可精確判讀,達到更加便民與實用之效果。綜合上述,此研究不論是在產業界抑或是學術界皆具有一定程度之應用價值。
  • Item
    以資訊植入及深度學習提升圖像化二維條碼實體輸出的辨識能力之研究
    (2021) 何怡慧; Ho, Yi-Huei
    QR code 是目前最普遍被採用的二維條碼,由於其為黑白模塊所組成,影響視 覺美觀,且在列印輸出時,因尺寸大小、網點擴張等印刷條件因素,導致條碼資訊 容易失真,影響解碼辨識。為了能夠將印刷輸出之小尺寸美化 QR code 保持視覺美 觀並且穩定解碼,因此本文提出了一套系統性的圖像化 QR code 資訊植入技術,列 印後掃描將辨識結果進行錯誤分析,了解 QR code 之黑點與白點資訊點模組的錯誤 特性並加以改善,最後以深度學習辨識來進行錯誤分析。實驗結果顯示,本研究所 發展的方法能相容於現行的列印輸出設備,在調整白色資訊點的植入訊息強度後, 可有效抑制因網點擴張所造成的「偽黑」 辨識錯誤的情形。且輸出的小尺寸圖像化 QR 仍有較佳視覺品質,降低錯誤發生率,並藉由深度學習辨識提升辨識能力,有 效增進美化 QR 的成功讀取率。對於彩色影像在指定輸出裝置的條件下,可得到最 佳化的 QR code 植入訊息方法及讀取能力,未來能夠運用於商業加值應用上,並彰 顯實體輸出條件對於圖像化 QR code 整合應用的重要性。