教育學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/1

教育學院成立於民國44年6月5日,時值臺灣省立師範學院改制為臺灣省立師範大學,初設教育、社會教育、體育衛生教育、家政教育、工業教育五個學系,發展迄今,本院共設有7個學系(均含學士、碩士及博士班)、5個獨立研究所、1個院級在職碩士專班。

本院為國內歷史最久之教育學院,系所規模、師資,及學生品質向為國內首屈一指,培育英才無數,畢業校友或擔任政府教育行政單位首長及中堅人才、或為大學校長及教育相關領域研究人員、或為國內中等教育師資之骨幹、或投入民間文教事業相關領域,皆為提升我國教育品質竭盡心力。此外,本學院長期深耕學術,研究領域多元,發行4本 TSSCI 期刊,學術聲望備受國內外學界肯定,根據 2015 年 QS 世界大學各學科排名結果,本校在教育學科名列第22名,不僅穩居臺灣第一,更躍居亞洲師範大學龍頭。

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    數據擬合與分群方法於強健語音特徵擷取之研究
    (2007) 林士翔; ShihHsiang.Lin
    語音長久以來一直是人類最自然且最容易使用的溝通媒介。無庸至疑地,語音也勢必會扮演著未來人類與各種智慧型電子設備間最主要的人機互動媒介,因此自動語音辨識(Automatic Speech Recognition, ASR)技術將會是扮演其中最關鍵且重要的角色。目前大部份的自動語音辨識系統在語音訊號不受干擾的理想乾淨實驗室環境下,可獲得非常不錯的辨識效果;但若應用至現實環境中,語音辨識率卻往往會因為環境中複雜因素的影響,造成訓練環境與測試環境存在的不匹配(Mismatch)的問題存在,使得系統辨識效能大幅度地降低。因此,語音強健(Robustness)技術就顯得格外重要與受到重視。 目前有關語音強健方法的研究若以其處理對象而言,大致上可從二種不同層面討論:從語音特徵值本身為出發,或是從統計分布出發,此二類研究各有其優缺點。本論文嘗試結合上述二種層面的優點,並且利用數據擬合(Data-fitting)技術來增進語音辨識系統的辨識效能。吾人首先提出了群集式為基礎之多項式擬合統計圖法(Cluster-based Polynomial-fit Histogram Equalization, CPHEQ),利用統計圖等化法(Histogram Equalization)的概念與雙聲源訓練語料(Stereo Training Speech Data)的使用求得多項式轉換函數。再者,吾人將此方法做一些假設及延伸,進而衍生出二種不同方法,其一是以多項式擬合統計圖等化法(Polynomial-fit Histogram Equalization, PHEQ)來改良傳統統計圖等化法需要耗費較多記憶體空間與處理器運算時間的缺點;另一個則是配合遺失特徵理論(Missing Feature Theorem)的選擇性群集式為基礎之多項式擬合統計圖等化法(Selective Cluster-based Polynomial-fit Histogram Equalization, SCPHEQ)來進行語音特徵參數的重建。語音辨識實驗是以Aurora-2語料庫為研究題材;實驗結果顯示,在乾淨語料訓練模式下,吾人所提出的方法相較於基礎實驗結果能顯著地降低詞錯誤率,並且其成效也較其它傳統語音強健方法來的好。