教育學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/1

教育學院成立於民國44年6月5日,時值臺灣省立師範學院改制為臺灣省立師範大學,初設教育、社會教育、體育衛生教育、家政教育、工業教育五個學系,發展迄今,本院共設有7個學系(均含學士、碩士及博士班)、5個獨立研究所、1個院級在職碩士專班。

本院為國內歷史最久之教育學院,系所規模、師資,及學生品質向為國內首屈一指,培育英才無數,畢業校友或擔任政府教育行政單位首長及中堅人才、或為大學校長及教育相關領域研究人員、或為國內中等教育師資之骨幹、或投入民間文教事業相關領域,皆為提升我國教育品質竭盡心力。此外,本學院長期深耕學術,研究領域多元,發行4本 TSSCI 期刊,學術聲望備受國內外學界肯定,根據 2015 年 QS 世界大學各學科排名結果,本校在教育學科名列第22名,不僅穩居臺灣第一,更躍居亞洲師範大學龍頭。

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    支鏈胺基酸與肌酸增補對耐力運動與瞬發力運動之貢獻
    (2010) 林芷筠; Chih-Yun Lin
    本研究探討支鏈胺基酸與肌酸增補對於訓練良好之徑賽運動員進行耐力與瞬發力運動之影響。在本雙盲研究中,召募12位男性徑賽運動員(20.3 ± 1.4歲,174.0 ± 6.0公分)進行三個試驗(1st試驗:支鏈胺基酸增補與耐力運動、2nd試驗:肌酸增補與耐力運動、3rd試驗:肌酸增補與瞬發力運動)。在1st試驗及2nd試驗中,支鏈胺基酸或肌酸增補前、後,分別執行相同之耐力運動(耐力試驗:65-70%最大保留心跳率之60分鐘跑步)。在3rd試驗中,肌酸增補前、後進行相同之瞬發力運動(瞬發力試驗:100公尺衝刺)。於各個試驗中,支鏈胺基酸(白胺酸54%、異白胺酸19%、及纈胺酸27%)或肌酸增補劑之攝取皆為每人每日12克,且均為期15天。本研究測量身體組成、握力、血漿葡萄糖、乳酸、支鏈胺基酸、天門冬胺酸、麩醯胺、丙胺酸、游離色胺酸、次黃嘌呤與尿酸,以及尿液羥基脯胺酸、三甲基組胺酸、尿素氮及肌酸酐為研究依據。 研究結果顯示,在耐力運動試驗中,支鏈胺基酸增補後,未改變受試者之身體組成,肌酸增補後,顯著增加受試者之體重 (p<.05),並有增加除脂體重及身體總水重之傾向。不論有無支鏈胺基酸或肌酸增補,對於握力表現皆無促進之作用。支鏈胺基酸增補顯著促進運動後恢復期血乳酸之清除 (p<.05)。進行耐力運動後,肌酸增補顯著降低運動後恢復期血乳酸之濃度 (p<.05)以及血漿游離色氨酸/支鏈胺基酸之比值 (p<.05)。支鏈胺基酸增補與肌酸增補(2nd試驗)均有增加血漿天門冬胺酸濃度之傾向,同時也有降低血漿麩醯胺、次黃嘌呤與尿酸濃度之傾向。支鏈胺基酸增補或肌酸增補(3rd試驗)後,皆顯著降低血漿丙胺酸濃度之恢復值 (p<.05)。支鏈胺基酸增補後,尿中代謝物並無顯著改變。不論在耐力運動前或瞬發力運動前,肌酸增補皆顯著降低血漿嘌呤代謝物與麩醯胺、尿液三甲基組胺酸與尿素氮濃度 (p<.05)。然而,在100公尺衝刺後,肌酸增補後之尿液羥基脯胺酸濃度顯著增加 (p<.05),但在耐力跑步後,肌酸增補則不影響尿液羥基脯胺酸濃度。 本研究結果顯示,訓練良好之運動員增補支鏈胺基酸或肌酸後,可節省耐力運動中肌肉肝醣及維持體蛋白,並具有降低肌肉中嘌呤核苷酸循環活性之作用。但肌酸增補有可能導致瞬發力運動員體內膠原蛋白之降解。
  • Item
    Influence of branched-chain amino acid supplementation on urinary protein metabolite concentrations after swimming
    (New York, NY : American College of Nutrition, 2006-06-01) Tang, F.C
    The influence of branched-chain amino acid (BCAA) supplementation on urinary urea nitrogen, hydroxyproline (HP), and 3-methylhistidine (3MH) concentrations after 25 min of breast stroke exercise (65-70% maximum heart rate reserved, 65-70% HRRmax) followed by a 600 m crawl stroke competition was investigated in a double-blind, counter-balanced study. METHODS: Male university students (19-22 years old) majoring in physical education participated in the study. Based on the previous swimming time of a 600 m crawl stroke, the participants were divided into two groups: placebo (n = 9, BMI = 24.2 +/- 2.1 kg/m2; 12 g of glucose/day; in capsules) and BCAA (n = 10, BMI = 22.7 +/- 1.5 kg/m2; 12 g of BCAAs/day; in capsules: leucine 54%, isoleucine 19%, valine 27%) groups. The participants maintained a regular dietary intake (except the prescribed breakfast on day 15) and exercise activity at a moderate/low intensity (60-70% HRRmax, swimming and rowing, approximately 1.5 hour/day) during the 15-day study. A prescribed exercise program was performed on day 15. Urinary and blood samples were collected before, during, and after the prescribed exercise for the measurements of the urinary urea nitrogen, HP, and 3MH concentrations in urine, as well as the glucose, lactate, glutamine, alanine, and BCAA concentrations in plasma. RESULTS: Two weeks of dietary supplementation did not induce any changes in the plasma glucose and total BCAA concentrations of either group, nor in the urinary urea nitrogen, HP, and 3MH concentrations in urine. On day 15, after 25 min of breast stroke exercise and a 600 m crawl stroke competition, plasma glucose concentration decreased significantly (p < 0.05) whereas plasma lactate concentration increased significantly (p < 0.05) in both groups. The exercise program prescribed in the study did not affect urinary urea nitrogen, HP, and 3MH concentrations. Twenty hours after the competition, however, a significant increase in the concentrations of urinary urea nitrogen, HP, and 3MH was found in the placebo group (p < 0.05), but not in the BCAA group. CONCLUSIONS: The results obtained in this study suggest that swimming induced muscle proteolysis was prevented by BCAA supplementation. The mechanism could be attributed to the availability of ammonia provided by the oxidation of supplemented BCAAs during exercise.