圖文傳播學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/83

歷史沿革

民國42年2月

政府遷台後為實施國家建設亟需技術人力,仍將初高中職校改制為單位行業教育,在美國國際合作總署之資助下,由當時的台灣省立師範學院設立工業教育學系,初設機工、木工、電工、圖文 (印刷) 工廠,聘請顧柏岩先生擔任系主任,自民國四十二年二月,開始招收第一屆新生,為培育印刷職業教育師資,不定額招收高職印刷科畢業學生,施以印刷師資專業教 育及工藝科「圖文工」師資之培育。

民國50年8月

工教系分別招收工職組及工藝組兩個班,工職組招收高工畢業生,專為培育工業職業學校師資,內有一組獨立招收印刷科畢業生一至三名,施以印刷學程專業教育,並為高中工藝科目培育圖文傳播科目之專業能力。

民國67年8月

工教系教學內容整合為:

機械職業教育組

電機、電子職業教育組

傳播設計教育組

其中圖文傳播定額招收學生五名,至民國八十四年增招至十五名。

民國84年

在許瀛鑑教授規劃,提出圖文傳播組獨立設系之申請,經教育部批准成立「圖文傳播教育學系」,隸屬教育學院,籌備於八十五年八月招生授業。 民國八十四年十月份,為預作「師資培育機構」之轉型,並配合本系培育「亞太媒體中心」之印刷出版媒體及影視傳播媒體工程人員政策下,國立台灣師範大學奉教育部令,本系更名為「圖文傳播技術學系」。

民國84年10月

為預作「師資培育機構」之轉型,並配合本系培育「亞太媒體中心」之印刷出版媒體及影視傳播媒體工程人員政策下,國立台灣師範大學奉教育部令,本系更名為「圖文傳播技術學系」。

民國85年8月

提供

四技二專聯招名額20名,錄取學生屬印刷出版科技組,授予工學士學位。

大學聯招名額20名,錄取學生為影像傳播科技組,授予工學士學位。

民國87年9月

教育部核定師大成立科技學院,本系由教育學院改隸科技學院;並再更名為圖文傳播學系,大學部修業年限為四至六年,至少應修完128學分。專業必修含 蓋印刷出版、影視傳播、電子傳播等領域。公費生尚須多修習26教育學分,畢業及獲得本科准教師資格 ,並在相關學校試教一年後取得教師資格。

民國88年7月

教育部核准籌備研究所碩士課程,並定於八十九年三月分印刷出版科技組與影像傳播科技組兩組招生,九月正式上課。研究所修業年限二至四年,應修完32學分,並選各組專業學程的必修課程才能撰寫學位論文,畢業獲頒工學碩士學位。

民國89年

千禧年為本系第一屆畢業生完成大學部學業,並為研究所首屆新生入學之雙喜年。

民國89年7月

教育部核准研究所碩士班招收「印刷出版科技」與「影像傳播科技」兩組學生。畢業後獲頒工學碩士學位。

民國94年

教育部核准開設「圖文傳播在職進修專班」。畢業後獲頒工學碩士學位。

現在

本系現有專任教師 10 人, 計教授 6 人;副教授 1 人;助理教授 2 人;講師 1 人。

學士班學生共計約 180 人。

碩士班學生約 176 人 (含碩士在職專班 103 人)。

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    圖像化QR code結合動態遮罩應用於影片之技術探討
    (2021) 鄭晴方; Cheng, Chin-Fang
    QR code在人們的日常生活中雖隨處可見,但大多用於平面影像,將影片結合QR code則相對少見。現今QR code應用於影片中的方式不甚美觀,將QR code直接覆蓋於影片中,不但會佔用畫面的一部分,更會阻擋閱聽人對影片內容的接收。為改善上述情形,本研究將三種不同內容之原始影片結合動態遮罩並進行羽化,利用資訊隱藏結合誤差擴散法之QR code植入技術,生成視覺更美觀的圖像化QR code,且調整圖像化QR code於影片中出現的時間;利用峰值信噪比 (Peak Signal to Noise Ratio) 評估不同圖像化QR code出現時間以及不同遮罩變化速度對影片品質的影響,並藉由問卷調查動態遮罩是否影響閱聽人對於圖像化QR code之察覺;最後使用智慧型手機測試各個檔案之掃描解碼時間。實驗結果顯示,本研究成功提出影片結合動態遮罩並植入圖像化QR code,藉由遮罩改變與調整QR code出現時間,使QR code不會持續出現而干擾畫面,但仍可讓閱聽人知道畫面可進行掃描,且能夠使用一般智慧型手機穩定掃描解碼。由PSNR評估後可得知,本研究提出之影片品質仍保持在人眼可接受之範圍,問卷調查中得知遮罩能降低閱聽人對於QR code Finder Pattern的察覺。研究提供未來影片製作上有新的趨勢,並且能廣泛應用於電視節目、廣告、網站等各平台,進行商業加值應用。
  • Item
    以資訊植入及深度學習提升圖像化二維條碼實體輸出的辨識能力之研究
    (2021) 何怡慧; Ho, Yi-Huei
    QR code 是目前最普遍被採用的二維條碼,由於其為黑白模塊所組成,影響視 覺美觀,且在列印輸出時,因尺寸大小、網點擴張等印刷條件因素,導致條碼資訊 容易失真,影響解碼辨識。為了能夠將印刷輸出之小尺寸美化 QR code 保持視覺美 觀並且穩定解碼,因此本文提出了一套系統性的圖像化 QR code 資訊植入技術,列 印後掃描將辨識結果進行錯誤分析,了解 QR code 之黑點與白點資訊點模組的錯誤 特性並加以改善,最後以深度學習辨識來進行錯誤分析。實驗結果顯示,本研究所 發展的方法能相容於現行的列印輸出設備,在調整白色資訊點的植入訊息強度後, 可有效抑制因網點擴張所造成的「偽黑」 辨識錯誤的情形。且輸出的小尺寸圖像化 QR 仍有較佳視覺品質,降低錯誤發生率,並藉由深度學習辨識提升辨識能力,有 效增進美化 QR 的成功讀取率。對於彩色影像在指定輸出裝置的條件下,可得到最 佳化的 QR code 植入訊息方法及讀取能力,未來能夠運用於商業加值應用上,並彰 顯實體輸出條件對於圖像化 QR code 整合應用的重要性。