理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    理論化學之研究:1. 由氨基丙二腈生成甘胺酸之反應機制 2. 1,3-丁二烯與1,4-二氮-1,3-丁二烯進行共軛雙烯[四加二]環加成反應(Diels-Alder)時,位能曲面與分子軌域作用之關係
    (2006) 朱鴻舜
    本論文分為兩大主題:一、由氨基丙二腈生成甘胺酸之反應機制。甘胺酸是蛋白質結構中最小的胺基酸,實驗家透過化學演化(chemical evolution)反應,可以利用簡單的無機物分子,合成出包含甘胺酸在內的各種有機分子。此處,我們將研究從氨基丙二腈反應產生甘胺酸的各種反應機制,並且針對部分反應過程中,分子軌域的作用情況予以討論。本研究共分為兩個部分。 第一部分 利用ab initio計算方法,我們針對化學演化中,由氨基丙二腈(amino-malononitrile)到氨基乙腈(amino-acetonitrile)之各種可能的反應路徑加以考慮,並且根據反應物所擁有的各種活化位置,探討其分支反應及其反應機制。反應路徑上所有的駐留點(stationary point)均分別利用HF/6-311G(d,p)和MP2/6-311G(d,p)幾何優選,並利用counterpoise計算方法校正BSSE,以求得位能曲面上的相對能量。此處將主要的結論歸納如下:(i) 比較各種反應機制中所需要的活化能大小,可以確認化學演化之可能性。(ii) 起始物所選擇的反應方向可以利用前線軌域理論(frontier orbitals theory)加以分析,由於H2O HOMO的對稱特性,H2O傾向於和起始物的nitrile group進行反應。(iii) 反應起始物的nitrile group與H2O作用的活化能為49.00 kcal/mol,遠低於後續反應機制中所需之活化能,因此為本研究過程之速率決定步驟。當起始物之nitrile group與H2O作用後,所放出的能量即足以完成後續反應。(iv) Boys-Bernardi counterpoise計算顯示,所有在MP2層次下之BSSE能量修正值均高於HF計算結果。 第二部分 針對最簡單的胺基酸分子,glycine,在自然界中可能的生成過程,本研究利用ab initio分子軌域理論計算方法,討論由amino acetonitrile至glycine的多種反應機構及其分支反應。研究結果顯示,最可能的二種反應途徑,在MP2/6-311G**下,其速率決定步驟所需之活化能分別為46.11與52.38 kcal/mol。考慮water-assisted reaction時,僅需一個水分子的加入,即可使能障大幅降低至10.65與21.74 kcal/mol,顯示水分子的加入具有重要的作用。藉由NBO分析其中間產物與過渡狀態,發現反應過程中,分子內作用力將明顯影響反應物之幾何結構、穩定性與反應活化能。進行分子間反應時,前線軌域理論可以提供合理的解釋,從而判斷分支反應中最可能的反應路徑。 二、1,3-丁二烯與1,4-二氮-1,3-丁二烯進行共軛雙烯[四加二]環加成反應(Diels-Alder)時,位能曲面與分子軌域作用之關係。 利用B3LYP/6-311G**研究1,3-丁二烯與1,4-二氮-1,3-丁二烯的各種旋轉異構物,於Diels-Alder反應時可能產生的各種反應途徑與過渡狀態。由於1,3-丁二烯與1,4-二氮-1,3-丁二烯均可扮演diene或dienophile,因此將產生兩種反應途經相互競爭。研究結果顯示,1,3-丁二烯通常傾向於扮演diene的角色,此時HOMO-LUMO secondary interaction以及立體結構互斥作用將影響到反應的活化能。由於二分子相互靠近時,反應能障主要受到特定π軌域之間的互斥作用所影響,其餘各分子軌域之間的安定作用和排斥作用則將大致相抵。因此,當軌域的能量過於接近時,將導致互斥作用增加而能障提升。然而,若反應物MO間的能量間隙過大,幾何結構在反應過程需要大幅度扭轉變形以增加軌域間的重疊度,將導致活化能上升。