理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    利用他家資訊模組來改良麻將程式
    (2020) 林猷琛; Lin, Yu-Chen
    近年來,隨著設備及技術的發展,在完全資訊的眾多遊戲上,電腦已經超越人類。不同於圍棋、黑白棋、將棋,麻將是一個多人、機率性、不完全資訊的遊戲,還有更多的發展課題。這篇論文將會簡單介紹麻將的玩法,並簡述過去的麻將程式相關技術。 本論文採用部分Let’s Play Mahjong!論文的方法,將說明是如何實作出判斷手牌狀態、如何判斷鳴牌的抉擇,並以此來加強麻將程式。 本篇論文在進攻的選擇上,採用注重機率的棄牌選擇。在防守上則將他人的棄牌以及整個盤面紀錄,以此分析並將其資訊化成數值。最後將防守和進攻的選擇一同判斷後,選擇出最佳的棄牌。 在防守策略上並非純以統計或模擬的方式,而是根據玩家在棄牌時,會以最佳化自己的手牌做處理為原則,並依照在其他論文看到的理論進行推導,做出一個防守模組。 解讀數據上,將實驗時的統計解讀方式做了修正,避免運氣上的成分超過實際的實力差。
  • Item
    九年級學生描繪力圖能力之探討
    (2018) 林宇宸; Lin, Yu-Chen
    本研究欲探討九年級學生固有的力學迷思概念類型及分布情形,並分析持有不同迷思概念的學生,在進行力圖分析時,是否會被特定的迷思概念干擾或產生其他影響。 研究首先以修改自Force Concept Inventory(FCI)的「力與運動物理觀念評量」,檢測46名九年級學生所持有的牛頓力學迷思概念並將其分類,並從各類型的學生,邀請2~3位表達流暢且具代表性的學生,讓學生完成「力圖分析評量」並進行測後晤談,以找出迷思概念與力圖分析的關聯性。 研究結果顯示:1. 經「力與運動物理觀念評量」(alpha信度值為.75)測得,學生主要具有「衝力迷思」及「作用力與反作用力迷思」。2.學生面臨相同概念但不同的情境的題目時,受各類迷思影響的程度也不同。3.學生容易將速度與加速度兩者混淆 。4.學生無法正確進行力圖分析的原因有二,其一為分析力圖的步驟有誤,一開始就列出所有已知力,再由牛頓三大定律去拼湊出未知的力,容易誤判摩擦力和空氣阻力的方向。其二為對各種力如正向力、摩擦力、浮力、磁力的認識不足,造成學生在進行力圖分析時,易誤判這些力的方向、或將不知來源與種類的力隨意以這些作用力解讀、或是直接忽略這些作用力。 學生遇到同概念卻不同情境、不同題型的題目時,有時會將之視為不同概念的題目,因而產生不同的解題特徵與解題步驟。因此在檢測學生所具有的迷思概念類型時,同一種迷思概念最好以兩種以上的情境、題型做檢測,方能精確掌握學生所具有的迷思概念。 另外,本研究分析出具特定力學迷思的學生,在特定情境下易持有之力圖分析解題特徵,將可提供第一線教師在教學時做參考,使其能根據解題特徵,找出學生可能持有的迷思。
  • Item
    結合二碲化鈷與二氧化鈦保護層之矽微米柱異質結構應用於光催化水分解
    (2017) 林育辰; Lin, Yu-Chen
    全球每年平均能源消耗約15兆瓦,且對於能源之需求與日俱增,故各國積極開發乾淨之替代能源變得越來越重要,而有效利用太陽能進行光催化水分解為一新之展望,其可取代化石燃料,以達到無碳排放與零污染產物等特點。應用於光催化水分解之光觸媒須滿足特定條件,首先須為半導體材料,且其導電帶位置須負於氫氣之還原電位,此研究以矽為光觸媒,因其具窄能隙,故可利用大部分之可見光,為太陽能產氫能源建立新之里程碑。 此研究使用矽微米柱陣列結構作為光捕捉之利用與增加反應表面積,並減少電子擴散路徑,其藉由黃光微影製程技術與乾式蝕刻製作而成,完成之柱長與直徑分別約為10 μm和0.85 μm。然而於目前之研究領域中,矽基光電極仍有許多問題存在,大致上為光生載子動能不足與氧化物生成造成不穩定之結果。此研究利用修飾過渡金屬二硫屬化合物(transition metal dichalcogenide;TMD)為軸,以二碲化鈷(CoTe2)作為共觸媒,並使用原子層沉積(atomic layer deposition;ALD)生成二氧化鈦(TiO2)作為保護層以解決上述之問題。藉由簡易之陽離子交換反應法,以鈷離子置換前驅物亞碲酸鈉(Na2TeO3)之鈉離子,並經氫氣還原反應後得二碲化鈷。而經原子層沉積後,可於電子顯微鏡下觀察到二氧化鈦包覆於矽微米柱表面,以避免電解液與矽基材直接接觸。 於異質介面上探討能帶彎曲對稱情形,使介面能障消失,更以六甲基二矽氮烷(hexamethyldisilazane;HMDS)進行預處理,減少表面張力並對表面進行改質,可有效改善共觸媒不均勻分散於微米柱結構之情況,並可降低介面阻抗,其結果於電子顯微鏡下觀察到粒子聚集情況降低,且以X光光電子能譜分析可得矽-氧鍵之比例減少,進而改善光生載子傳輸效率,以降低載子再結合發生機率。 光電流特性則於模擬太陽光照射(100 mW/cm2)下,以標準氫電極電勢(reversible hydrogen electrode;RHE)為0 V下量測其光反應,其結果顯示於定量下30 μL共觸媒前驅物所合成之二碲化鈷具最佳光電流特性,於0 V vs. RHE下光電流可達24 mA/cm2,同時起始電位正偏移至0.17 V。而沉積二氧化鈦保護層後,進行長時間產氫量之量測,經計算後可得約80%之法拉第效率(Faradaic efficiency;ηF),且其穩定性於酸性電解液環境中可維持5小時無明顯衰減。