理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    原子島在金屬/半導體介面的成長研究 (以鈷/銀/鍺(111)為例)
    (2012) 黃筱嵐; Xiao-Lan Huang
    The thermal reaction of Co on Ag/Ge(111)-(√3×√3)/(4×4) phases was studied by scanning tunneling microscopy, low energy electron diffraction, and Auger electron spectroscopy. Firstly, we address on the controversies over the chemical composition of Co islands by examining the thermal reaction of Co on "Ag/Ge(111)-" √3×√3 phase, as well as the coexisting Ag/Ge(111)-4×4 phase. From the study, one finds that Ag atoms shift from (4×4) phase to (√3×√3) phase because of the interaction between Co and the surface. The fact suggests that it is on the surface where Ag-less phase (4×4) transforms into Ag-richer phase (√3×√3). Secondly, we proof that (√13×√13) periodicity is composed of Co-Ge alloy, whereas (2×2) periodicity is composed of pure Co. Thirdly, we realize that it is "Ag/Ge(111)-" √3×√3 preventing Co from diffusing into substrate when annealing the surface at the temperature between 320 K and 730 K. It is known that Co"-" 2×2 islands grown on Ag/Ge(111)-√3×√3 surface are in hcp structure with a (11-20) orientation. The island evolution involves the shape transformation of a unit cell from parallelogram into rectangular. Meanwhile, the shape of the island shifts from hexagonal to stripe. In additions, it is identified that Co-2×2 islands grow along two crystallographic directions: pseudo-[0001] and pseudo-[1-100]. We observe a lateral shift between the topmost and the underlying bilayers for islands which grow along pseudo-[0001] direction. On the other hands, no lateral shift is perceived for those growing along pseudo-[1-100] direction. In terms of the strain–relaxation of Co-2×2 islands grown on Ag/Ge(111)-√3×√3 surface, we analyze the images taken by scanning tunneling microscopy. From the studies, one realizes a common fact that Co"-" 2×2 islands adopt a more compact arrangement than Ge(111) substrate does, whereas each Co-2×2 island is different in the degree of atomic compactness. Yet, we do not observe any distinct relationship between strain–relaxation and the island height. In addition, we identify three different groups of islands from analyzing the correspondence between the strain–relaxation and the island size: (i) small islands (less than 80 nm2) with fixed inter-row distances in high atomic compactness, (ii) small islands with unfixed inter-row distances, and (iii) big islands (bigger than 80 nm2) with fixed inter-row distances in less compact atomic arrangement, as compared to the first two groups. Based on the obtained information, we propose the model that explains the relationship between the strain–relaxation and the island size. Regarding electronic structure, we study "Ag/Ge(111)-" 4×4 phase, "Ag/Ge(111)-" √3×√3 phase, Co"-" 2×2 island, and "CoxGey-" √13×√13 island by means of scanning tunneling spectroscopy at room temperature. Similar to the one acquired from "Ge(111)-c" 2×8, the spectrum obtained from Ag/Ge(111)-4×4 structure reveals a shoulder at 0.7 V, which indicates that Ge adatoms were donated to the electronic states of the Ag-driven phase. However, the electronic spectrum taken from the "CoxGey-" √13×√13 island shows a large number of peaks, which indicates the complex bonding between "CoxGey-" √13×√13 island and the substrate. In addition, the spectra obtained from the Co-2×2 island grown on the step demonstrate a number of peaks at negative sample bias, which is different comparing to those taken from the Co-2×2 island located on the terrace. The phenomenon explains the various Co-substrate interactions, which are accompanied with the growth of Co islands at different areas of the stepped surface.