理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    超薄鐵銥合金的成分比例與結構研究
    (2011) 李亞倫; Ya-Lun Li
    本論文主要研究鐵超薄膜在銥(111)基底上的成長模式、表面結構、化學偏移及合金成分比例。樣品製備與實驗均在超高真空環境下進行,並透過低能量電子繞射與歐傑電子能譜進行實驗觀測。在室溫300 K鐵超薄膜的成長方面,我們首先以歐傑電子能譜觀察一系列不同厚度之鐵薄膜,發現鐵薄膜在銥單晶上的化學偏移與塊材電負度所預期的結果有相反的趨勢。當鐵薄膜厚度超過2 ML時,其L1M1M2歐傑電子動能隨厚度增加而下降,銥N1N2N7歐傑電子動能隨厚度增加而上升,介面效應仍然明顯;厚度超過4 ML時,鐵L1M1M2歐傑電子動能變化趨於平緩,介面效應減弱,此時樣品的化學狀態以塊材鐵為主。從室溫300 K鐵超薄膜成長之低能量電子繞射實驗結果發現,當鐵薄膜厚度超過5.8 ML時,鐵原子主要是以bcc(110)在fcc(111)上的Kurdjumov-Sachs (KS)模式進行磊晶;當厚度小於1.8 ML時,鐵原子則以基底fcc(111)的方式進行磊晶。鐵超薄膜樣品加熱退火至800 K時,我們從歐傑電子能譜的強度分析可以得到穩定的鐵銥成分比例為1:3;化學偏移的分析發現銥N1N2N7歐傑電子動能比起乾淨銥單晶有下降的趨勢,因此排除鐵原子退吸附的可能;在低能量電子繞射實驗結果中,電子入射動能120 eV時可以發現清楚的(2×2)亮點。由以上三個實驗結果我們推測鐵銥形成規則合金FeIr3,最後透過氬離子濺射實驗進行深度分析,發現實驗所得之濺射效率與FeIr3模型的計算結果相差3%,顯示鐵銥確實形成規則合金FeIr3。另一方面,在低能量電子繞射實驗結果中,電子入射動能75 eV時,可以發現鐵銥合金表面上存在有鐵的兩種結構:bcc(110) KS與bcc(111) (3/2×3/2)R20°。當鐵超薄膜樣品厚度大於5.8 ML時,此兩種結構會同時存在於加熱退火後的FeIr3合金表面;當厚度小於1.8 ML時,合金表面將只剩下bcc(111)結構。
  • Item
    覆鐵或鎳薄膜在鉑針的皺化研究
    (2010) 洪萱臻; Syuan-Jhen Hong
    利用場離子顯微鏡(FIM)觀測蒸鍍鐵或鎳原子在鉑針上,加熱退火後的皺化行為。鐵鉑合金加熱退火至800~900K,有兩種金字塔稜線產生。一種為擴張的{100}、{110}及{111}切面在{351}切面的位置形成,另一種則是由{110}、{111}及{311}切面擴張,原子堆積在{231}切面形成金字塔稜線。而鎳鉑合金加熱退火至500~600K,由{110}、{111}及{311}切面擴張,在{231}的位置長成金字塔,可由FIM觀察其稜線。
  • Item
    鐵超薄膜在白金(111)面上的成長
    (2007) 許宏彰
    我們利用歐傑電子能譜(Auger Electron Spectroscopy, AES)、低能電子繞射(Low Energy Electron Diffraction, LEED)、以及紫外光電子能譜術(Ultraviolet Photoelectron Spectroscopy, UPS)來深入探討鐵超薄膜鍍於Pt(111) 的成長模式以及在高溫形成合金時的成份、結構變化。 室溫下,鐵薄膜鍍於Pt(111)的成長模式為三層平整成長之後再以三維島狀的S. K. mode。由AES、LEED均能得到相同的結論。而隨著厚度的增加也可以發現在表面有Domain Rotation的行為。因此在LEED Pattern出現了新的衛星亮點。 1,2 與 5 ML Fe/Pt(111)升溫過程各自在520、570與620 K開始在界面擴散;而在670、670與720 K時,開始有合金的行為;而對於2與5 ML的系統,在820與870 K時Domain Rotation的行為隨著溫度的昇高而消失。對於1 ML 深溫至1060 K時,由於表面的重構使得表面鉑原子間距加大,LEED Patternt出現新的(1x1)繞射亮點。
  • Item
    含十六族 (硫、硒、碲) 與過渡金屬 (錳、鐵、銅、汞) 團簇化合物之反應性、電化學、電子吸收光譜及理論計算
    (2014) 傅怡瑄
    1. S/Mn/CO 系統之研究 利用 S powder 與 Mn2(CO)10 以莫耳比 2:1於 1 M 或 7 M 之 KOH/MeOH 溶液中反應,可分別得到 [S2Mn3(CO)9]─ (1) 及 [HS2Mn3(CO)9]2─ (2)。若將莫耳比改為 5:1 於 4 M 之鹼性溶液中,則生成多硫之錳錯合物 [Mn3(CO)9(-S2)2(-HS)]2─ (3)。此外,團簇物 1 可於 鹼性溶液中與 CO 或 S powder 反應轉換成錯合物 2 及 3。而團簇物 2 也可藉由加入 [Cu(MeCN)4]BF4 進行氧化反應轉換回團簇物 1 並伴隨氫氣生成,或於高溫下與 S powder 反應可形成錯合物 3。反之,錯合物 3 轉換回 2 則需於鹼性條件下外加 Mn2(CO)10 而成。有趣的是,若團簇物 2與 S powder 的反應改置於室溫下,可意外得到另一錯合物 [HMn3(CO)9(-S2)2(-S)]2─ (4)。錯合物 3 及 4 為同分異構物,且動力學產物 4 可經由加熱轉換成熱力學產物 3。除此之外,錯合物 3 也可與不同氧化試劑 (例如:MeI、CH2Cl2、Mn(CO)5Br、[Cu(MeCN)4]BF4) 反應,生成氧化物 [Mn3(CO)9(-S2)(-HS)(-S2Me)]─ (5)、[{Mn3(CO)9(-S2)2(-HS)}2(CH2)]2─ (6)、[S5Mn4(CO)12]2─ (7) 及 [S4Mn3(CO)10]─ (8)。上述化合物之生成、轉換及電化學亦藉由理論計算進一步驗證。 2. E/Fe/CO (E = S, Se, Te) 系統之研究 將一維含 Cu 聚合物 [{Cu(dpy)(MeCN)2}{BF4}]n (dpy = 4,4'-dipyridine) (1) 與含十六族混合 Hg 與 Fe 羰基團簇物 [Et4N]2[{EFe3(CO)9}2Hg] (E = S, [Et4N]2[2a];Te, [Et4N]2[2c]) 以莫耳比 2: 1 混合,利用液體輔助機械研磨方式 (liquid-assisted grinding, LAG) 分別可得到一維聚合物 [{Cu(dpy)(MeCN)}2{{SFe3(CO)9}2Hg}]n (4)及 [{Cu(dpy)(MeCN)2}2{{TeFe3(CO)9}2Hg}]n (5c);於相似條件下,當若將聚合物 1 與 [Et4N]2[{SeFe3(CO)9}2Hg] ([Et4N]2[2b]) 或 [Et4N]2[2c] 及 dpy 以莫耳比 2:1:0.5 進行研磨,可生成混合一維及二維骨幹之陰陽離子聚合物 [{Cu(dpy)(MeCN)2}{Cu(dpy)1.5(MeCN)}{{EFe3(CO)9}2Hg}]n (E = Se, Te)。此外,固態電子吸收光譜顯示 3、4、5b 及 5c 皆具有半導體性質,其能隙落在 1.36 ~ 1.67 eV 之間。再者,此系列聚合物之生成及光學性質進一步藉由理論計算佐證。 關鍵字: 團簇物、硫、硒、碲、錳、鐵、銅、汞