理學院
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3
學院概況
理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。
特色理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。
理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。
在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。
在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。
Browse
7 results
Search Results
Item 兩性共聚物:合成以及對水泥砂漿中氧化石墨烯分散性之影響(2022) 郭景隆; Guo, Jing-Long本篇論文的研究主要為合成出一種羧酸系兩性離子型共聚物PD (單(5-氨基-2-(1-(2-((羧甲基)二甲基氨基)乙氧基)-1-氧代丙烷-2-基)-4-甲基-5-氧代戊酸酯)二鈉),用來改善氧化石墨烯在水泥砂漿中的分散,提升試體的抗壓強度。實驗過程中使用馬來酸酐和DMEA(N,N-二甲基乙醇胺)合成DME(二甲基胺乙基氧羰基丙烯酸),然後再與氯丁酸鈉鹽反應得到單體DCA(N,N-二甲基((羧酸)丙烯醯氧基乙基)乙酸鈉),最後使用過硫酸銨為起始劑,與不同比例的丙烯醯胺(AM)經由自由基聚合反應合成得到共聚物PD,經由FTIR和1H-NMR光譜鑑定共聚物的分子結構,並以GPC/SEC測得其分子量。另外,使用modified Hummers法將石墨烯氧化成氧化石墨烯(GO)。將PD加入含GOA的人工孔隙溶液中,透過沉降體積試驗、黏度實驗、粒徑分布與界達電位的測試,探討PD對於GO在人工孔隙溶液中的分散效果。測試結果顯示, GO在人工孔隙溶液中的沉降時間隨著PD之AM/DCA比例的增加,呈現先增後減的趨勢。其中PD在AM/DCA=5時有最長的沉降時間;此外,GO在溶液中的沉降時間隨著PD分子量的上升或添加量的增加,呈現先增後減之趨勢。其中以添加10wt% PD15b時,GO在溶液中的沉降時間為最長,達到45小時,此時溶液的黏度為最低(3.08 mPa‧s),溶液中GO的D50粒徑為最小、界達電位之負值為最大,分別為127 nm和-25.5 mV,亦即在所合成的共聚物中以PD15b(AM/DCA=5, M̅n=1.8×104)對於氧化石墨烯在孔隙溶液中有最好的分散效果。將PD15b加入含GOA的水泥砂漿中,進行抗壓強度測試,發現添加10wt% PD15b與0.05wt% GOA的砂漿試體,在28天的抗壓強度為34.6 MPa,與未添加GOA、共聚物的控制組相比提升了52.4%。Item 羧酸型共聚物:合成與對於砂漿中氧化石墨烯分散性的影響(2021) 許永; HSU, Yung本篇研究目標是合成一種羧酸系兩性離子型共聚物PDA(聚(N,N,N-二甲基((羧酸)丙烯醯氧基乙基)丁酸鈉-丙烯醯胺),作為共聚物用來改善氧化石墨烯在水泥基材料的分散性以提升試體的機械性質。先使用馬來酸酐和N,N-二甲基胺乙醇合成DME(二甲基胺乙基氧羰基丙烯酸),再與4-氯丁酸反應得到單體DCB(N,N,N-二甲基((羧酸)丙烯醯氧基乙基)丁酸鈉),最後使用過硫酸銨(APS)為起始劑,與不同比例丙烯醯胺(AM)經由自由基聚合反應合成得到兩性離子型共聚物PDA,PDA經由FTIR和1H-NMR光譜鑑定其結構,以GPC測定其分子量。另外,使用Hummers法將石墨烯氧化成氧化石墨烯(GO)。將PDA加入含氧化石墨烯的水溶液中,透過沉降體積、粒徑分布、界達電位與黏度實驗測試,探討PDA對於水溶液中GO的分散效果。測試結果顯示,在人工孔隙溶液中共聚物對於GO的沉降時間隨著AM/DCB比例的增加呈現先增後減的趨勢,PDA在AM/DCB=4時有最長的沉降時間;另外,GO的沉降時間隨著PDA分子量的上升或添加量的增加而增長,因此PDA41添加量為20 wt%時,GO的沉降時間為最長達65小時,此時溶液的黏度為最低(2.88 mPa‧s),溶液中GO的D50粒徑為最小、負界達電位為最大,分別為287 nm和-28.2 mV。因此在所合成的共聚物中PDA41有最好的分散效果。將PDA41加入含氧化石墨烯的水泥砂漿中,測試砂漿試體的抗壓強度與抗彎強度。結果顯示,添加20 wt%的PDA41與0.05 wt%的GO的水泥砂漿試體,在28天的抗壓強度為34.7 MPa,抗彎強度為6.73 MPa,與未添加共聚物的控制組相比提升了57%與99%。Item 中孔洞複合材料應用於電化學與拉曼感測器(2020) 李宜蓁; Lee, Yi-Chen本研究以類史托伯方法 (Stöber method) 藉由沸石晶種與界面活性劑在40度下自組裝形成中孔洞沸石奈米粒子 (MZNs)。這種以沸石為組成的奈米粒子具有高結晶性所產生之微孔性質,同時具備耐高溫及水氣之性質。MZNs具有高比表面積 (SBET > 800 m2/g) 與大孔徑 (~5 nm)能同時作為硬模板,用於限制銀奈米粒子之生長能有效作為表面拉曼增強 (SERS) 的基材,將所合成的中孔洞奈米銀複合材料 (Ag@MZNs) 負載到晶片上製成簡易型SERS感測晶片,能夠有效進行10-1 M可多普洛菲 (Ketoprofen) 等濫用藥物之檢測。 本研究另一個材料為合成中孔洞氧化石墨烯奈米粒子 (MGNs),此材料負載於高比表面積 (SBET > 800 m2/g) 之MZNs上,經由高溫乙烯處理石墨烯化,表面沉積類氧化石墨烯 (GO) 使其具有半導體特性,可浸塗於網印碳電極 (SPCE) 上進行電化學感測10 mM易氧化之人體精神分子,成為多巴胺電化學檢測時的理想選擇,透過修飾MGNs增強電極的靈敏度,讓MGNs@SPCE能有效應用於檢測微量多巴胺。Item 硫酸對氧化石墨烯結構的影響(2012) 柴世濂本研究分為(一)不同的硫酸濃度對GO 進行反應與(二)稀硫酸濃 度0.6M 對GO 進行不同的反應時間。 利用粉末X 光繞射儀、拉曼散射儀、X 光光電子能譜儀和四點 探針等儀器鑑定,對其材料進行分析。結構上,根據拉曼散射的D band 和G band 之比值可以得知材料的石墨化程度。隨著硫酸濃度增加至 18M,ID/IG 比值會從2.17 下降至1.46,表示脫水還原形成石墨烯。 然而,在稀硫酸0.6M 反應1.5 小時,GO 結構會進行開環,ID/IG 比值 從2.17 上升至2.89,表面缺陷增加;24 小時則會進行部份脫水還原, ID/IG 比值從2.17 下降至1.71。電性上,隨著硫酸濃度的提升,導電 率從1.67×10-3S/m 提升至1.40×102S/m,由於高濃度的硫酸對GO 進 行脫水反應,使原本GO 表面的含氧官能基部分脫去,導電性因此變 高;然而0.6M 稀硫酸對GO 反應時間的增加,導電率從1.67×10-3S/m 提升至5.73×10-2S/m。 此研究是硫酸對GO 的時間和濃度影響,因此結果可提供以環 保的方式製備石墨烯以及GO 的結構修飾,作為重要的參考價值。Item 兩性分散劑的合成以及對於氧化石墨烯砂漿性質的影響(2019) 葛敬; Ko, Ching本論文研究目的在於合成一種兩性離子型磺酸系分散劑來改善氧化石墨烯在水泥基材料中的分散性並提升漿體的機械性質。使用甲基丙烯酸二甲基丙基磺酸胺乙酯 (N-(3-sulfopropyl)-N- methacroyloxyethyl-N,N-dimethyl-ammonium betaine)與丙烯醯胺(Acrylamide)為單體,起始劑為Benzoyl peroxide,經由自由基聚合反應得到分散劑Poly(sulfobetaine-co-acryl amide)(PSA),化學結構經由FT-IR和1H-NMR光譜鑑定,以GPC測量聚合物的分子量。石墨烯則是經由Hummers法氧化成氧化石墨烯,化學結構再經由FT-IR、RAMAN、SEM觀察其結構變化。 經由沉降體積、粒徑分布、界達電位和流變性質實驗結果顯示,添加PSA42 (Mw = 5.4×105)在氧化石墨烯人工孔隙溶液中的分散效果優於其他分子量之聚合物,因PSA42於氧化石墨烯表面有較小的粒徑、較高的界達電位、較低的黏度以及在水泥砂漿中添加10wt% PSA42和0.05 wt% GOA的28天抗壓強度為32.5MPa、抗彎強度為7.1MPa,與控制組相比能分別提升84%、97%;最後經由XRD和DSC實驗則觀察到在水泥漿中添加GO能有效加速和增加前期水化產物的形成。Item 以中孔沸石限制硫化銀奈米粒子及氧化石墨烯之合成、鑑定與應用(2017) 戴子鈞; Dai, Zih-Jyun本研究以矽晶圓表面之中孔洞沸石薄膜,做為生長奈米結構的重要基材,並利用中孔洞來限制銀奈米粒子大小,及其整齊排列孔洞做為氧化石墨烯均勻沉積的生長環境,以達到製備複合材料與相關應用。 第一部份首先討論中孔洞沸石「表面矽烷化改質」對吸附不同電性銀源的影響。將吸附完銀源的中孔洞沸石粒子(MZN)進行銀化合物的奈米粒子生長,並經由電子顯微鏡、氮氣吸脫附和X光繞射光譜,對孔洞結構及奈米粒子大小進行分析鑑定。找出最佳化條件、並於中孔洞沸石薄膜(MZTF)上負載高密度的奈米粒子陣列,接續以Solution-Solid-Solid(SSS)法催化生長半導體奈米線。 第二部份為使用中孔洞沸石薄膜,以化學氣相沉積法於其表面生長氧化石墨烯(GO),經由拉曼光譜、電子顯微鏡、氮氣吸脫附和X光繞射光譜進行結構鑑定,証實中孔洞沸石薄膜的導電度提升兩個級數,並功證實有石墨稀增強拉曼散射(GERS)的特性。Item 利用有機金屬骨架製備中空多面體金屬氧化物混摻還原氧化石墨烯之鋰離子電池應用(2015) 林奎廷; Lin, Kuei-Ting氧化銅是近年來鋰離子電池中備受矚目的陽極材料,因為擁有高理論電容量(~670 mAhg-1),成本低等優點,然而,在與鋰離子反應時會造成材料膨脹,而造成電池的負面的效果,以及低導電度的問題需要克服。 此研究中以兩階段燒結氧化石墨烯與有機金屬骨架化合物[Cu3(btc)2]n(btc = benzene-1,3,5-tricarboxylate),製備中空多面體複合物 rGO-Cuox,將其應用在鋰離子電池上,並測試其電化學表現。在200 mAg-1電流密度下,rGO-Cuox第一圈電容量為662 mAhg-1,從第三圈開始,電容量隨循環圈數增加而增加,到達第220圈時,電容量逼近700 mAhg-1。在1000 mAg-1電流密度下,亦有類似之現象。與氧化石墨烯及[Cu3(btc)2]n有機金屬骨架化合物相比,此rGO-Cuox複合材料結構成功提升鋰離子電池之效能。