理學院
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3
學院概況
理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。
特色理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。
理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。
在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。
在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。
Browse
8 results
Search Results
Item Properties of alkaline earth metal intercalated in FeySe1-xTex system by ammonothermal method(2013) 楊名正摘要 近年鐵基超導體:鐵硒、鐵硒碲和鉀鐵硒相繼被發現超導特性,經比較其超導相變溫度和晶格結構分析後,普遍認為鐵硒層狀結構的距離和其超導相變溫度成正相關關係。「氨熱法」是一種將金屬溶解於液態氨當中,讓金屬原子嵌入鐵硒的層狀結構之間的方法。實驗結果經氨熱法反應後的樣本晶格長度明顯增長,甚至超過原本預期的長度,且超導相變溫度也確實大幅增加。這是因為在氨熱法的過程中,除了原本預期的金屬原子外,連氨分子也一起嵌入了結構之內。 在本篇文章裡,由於鐵硒碲是在做氨熱法須預備的重要材料,我們首先探討鐵硒碲的超導特性品質與其成分的關係,從中我們學到了一些關於鐵硒碲的合成特性以及與超導品質的關係。 鍶嵌入鐵硒層的實驗非常成功,我們找到了其超導特性並探討了相關的磁性和結構。 在鹼金嵌入鐵硒碲層方面的實驗就沒那麼順利,我們發現了一些奇特的磁性現象,文章中將介紹我們觀察到的現象,包含磁性和結構部份。Item 抑制矽化物生成的低溫鐵薄膜之成長與磁性研究(2011) 涂文廷; Wen-Tin Tu相較於室溫成長,低溫下成長於矽基板上的鐵薄膜成功的減少了矽和鐵介面間的矽化物產生。在鐵矽介面間,5到15層低溫成長的鐵薄膜,在350K下都能夠維持穩定的狀態。同時,低溫成長的鐵薄膜其表面相當的平整,粗糙度約在0.4到0.6個奈米間。因此,低溫的鐵薄膜被用來做為一介面層,接續在室溫下繼續蒸鍍鐵薄膜。我們利用磁異相能的單一磁矩模型,來模擬矯頑場的變化,並推論和討論表面及體積異相能。Item 鈷及鐵薄膜於鎢(111)表面上的結構與磁性(2011) 林奕成; Yi-Cheng Lin在本篇報告中我們於100K的溫度將鈷或鐵蒸鍍在鎢(111)的表面並升溫至室溫後,藉著低能量電子繞射以及磁光柯爾效應探討其結構與磁性,此外我們將呈現樣品熱處理過程中所觀察到的特殊磁現象。Item 鐵薄膜與鉑基底間溫度相依的介面擴散行為(2009) 蔡蕙雅; Hui-Ya Tsai我們利用歐傑電子能譜術配合離子濺射,觀察隨離子濺射打掉表面原子系統表面的組成變化,分析1ML Fe/Pt(111)系統經升溫熱退火後鐵原子的擴散情形,並搭配理論估算鐵在合金各層的分布比例。 觀察570K,700K,910K熱退火後的鐵原子擴散,經由歐傑縱深分析後發現鐵原子大部份分布在表面前兩層至第三層,其中700K與910K鐵原子與白金在表層混合均勻,同時配合理論估算得知700K熱退火後,鐵原子在第一層佔73%,在第二層佔23%;910K熱退火後鐵原子在第一層佔 70%,第二層佔21%,比例差異不大。 1017K下的鐵原子則已經鑽入內層與白金均勻混合成類似塊材合金的結構。以理論估算得知鐵原子在每一層比例佔11%至15%,表示鐵原子往內層擴散並與白金混合均勻。Item Co/Fe/Pt(111)的磁性研究(2007) 何淙潤我們利用表面磁光柯爾效應儀(SMOKE)探測鐵超薄膜在純白金以及鈷超薄膜在鐵與白金所形成的磁性基底上磁性隨著薄膜厚度的變化。 Fe在Pt(111)上的成長,其磁性和薄膜厚度的關係受外加磁場的大小影響而有所不同,利用小磁場可以測得磁化易軸位於in plane方向,隨層數增加到3 ML也是。1 ML Fe/Pt(111)經退火效應後在室溫測量磁滯訊號,發現只有在Longitudinal方向有值,當退火溫度到600 K~650 K時,有SRT發生,800 K時磁滯曲線消失。低溫成長的1 ML Fe/Pt(111)樣品,有垂直異向性(PMA)現象發生,磁化易軸在out of plane方向上。 dCo/1 ML Fe/Pt(111)樣品的磁性探測,隨Co原子的層數增加,其L-MOKE在柯爾訊號和矯頑磁場都會有增強的現象,當蓋上1 ML Co時,有增強P-MOKE的柯爾訊號,隨Co原子層數增加到2 ML以上,P-MOKE消失。分別在1~3 ML Fe/Pt(111)樣品上鍍上1 ML Co原子,發現都有P-MOKE及L-MOKE柯爾訊號增強的情況。 1 ML Co/1 ML Fe/Pt(111)樣品退火處理後,在溫度為400 K上以,原本存在的P-MOKE柯爾訊號消失;溫度在400 K~500 K之間,磁滯曲線沒有明顯的變動,當溫度到達650 K以上,垂直異向性增強,而磁化易軸轉成out of plane,產生SRT現象。 經由以上鐵,鈷薄膜在不同基底的磁性探討,和實驗室之前的研究統整,希望將來能夠把鐵磁性物質在白金上的磁性與結構變化做個完整的探究。Item 銀覆蓋層對鐵超薄膜在鉑(111)上的磁性影響(2007) 郭明憲; Ming-Hsien Kuo我們以自製的磁光柯爾效應儀(MOKE)探測Ag超薄膜覆蓋於Fe/Pt(111)樣品前後之表面磁性變化,並藉由歐傑電子能譜術(AES) 鑑別樣品表面組成成分、計算薄膜厚度,以及低能量繞射電子儀 (LEED)研究表面結構,利用升降溫系統與離子濺射進行退火效應與深度分析的實驗。 經由在1~3ML Fe/Pt(111)上逐漸覆蓋不同厚度的銀,發現Polar方向的磁性有增強,而Longitudinal方向有減弱的現象,且在Ag覆蓋達1ML之後就無太大變化。藉由離子濺射的過程,觀察磁性及歐傑訊號強度的變化,確認磁性改變的原因來自於Ag-Fe界面效應的作用。 將1ML Ag/1ML Fe/Pt(111)經由不同溫度的退火處理之後,在室溫量測其磁性與歐傑訊號,發現在低於600 K的退火溫度時,由於Fe原子與Pt原子的交換減弱了Ag-Fe介面引致PMA的作用,使得Polar方向的磁性慢慢消失。在退火溫度介於600 K~700 K之間時,由於Fe跟Pt開始形成合金,使得Polar與Longitudinal方向的柯爾訊號及Hc大幅的增加。當退火溫度超過700 K時,由於Fe原子往下擴散到更底層去而Pt原子往上浮出,以及Ag原子逐漸的退吸附,使得Ag-Fe介面的效應變得更弱,導致Polar方向及Longitudinal方向的磁性逐漸消失。Item 鐵在鍺(111)-c(2×8)及銀/鍺(111)-(√3×√3) 表面上隨溫度衍化的行為(2012) 周明寬在室溫下蒸鍍少量鐵原子於鍺(111)-c(2×8)上,並進行一連串加熱退火的實驗,以穿隧掃描顯微鏡對其形貌進行觀測。從STM的影像圖和對表面上原子島的體積分析,顯示隨著加熱退火溫度的提升,鐵會在鍺基底上造成缺陷與破洞,藉以拉出鍺進行合金使體積增加,並形成數種不同形貌的島嶼。最終當加熱退火溫度達到840K以上後,表面上的原子團會聚集成數種巨大的原子島。 再來將銀蒸鍍至鍺(111)-c(2×8)表面上,將其加熱退火使樣品表面重構為銀/鍺(111)-(√3×√3)後,蒸鍍少量鐵再度進行加熱退火的實驗。與鐵鍺系統的實驗結果比較後發現,銀能夠保護基底上不會出現缺陷,但仍無法阻止鐵在加熱退火溫度升高後從基底拉出鍺進行合金。於鐵銀鍺系統中發現的原子島種類和鐵鍺系統中大致相同,但鐵銀鍺系統中出現新種類的島和一些跡象顯示銀對於鐵鍺合金的成長仍有影響力。Item 十六族元素 (硒或碲) 混合六族元素 (鉻、鉬、鎢) 或銅 (I) 配位含氮異環碳烯 (NHC) 配位基之團簇化合物的合成、物性及化性探討(2014) 簡思環1. Te/M/CO (M = Cr、Mo 及 W) 系統之研究 以不同莫耳比例之 TeO2、Cr(CO)6 和 Et4NBr 於 1.5 M 鹼性 MeOH 溶液中加熱迴流 (superheating),可分別得化合物 [Te2Cr4(CO)18]2─ (1) 和 [Te7Cr6(CO)20]4─ (2)。反之,若此一鍋化合成於 1 M 鹼性 MeOH/MeCN 混合溶液及 45 oC 下反應,則形成化合物 [Te7Cr4(CO)14]4─ (3)。當改變主族來源,進一步混合 Te powder、M(CO)6 (M = Mo 和 W) 及Et4NBr 於 1 M 或 2 M 鹼性 MeOH/MeCN 混合溶液及 45 oC 下反應,亦獲得一系列新穎 金屬團簇物 [Te7Mo6(CO)20]4─ (4)、[Te6Mo6(CO)15]4─ (5)、[Te4W4(CO)14]4─ (6) 及 [Te6W5(CO)12]4─ (7)。此外,化合物 1 和 6 可藉由加入 TeO2/KOH 或置於加熱環境下,可分別擴核形成化合物 2 和 7。而化合物 4 與 Mo(CO)6/KOH 反應,則降解形成化合物 5。有趣的是,當化合物 7 與 I2 反應,可生成等電子結構 [Te6W5(CO)12]2─ (8)。其化合物之生成、結構轉換及相關性質亦藉由理論計算進一步驗證。 2. Se/Fe/CO/Cu/NHC 系統之研究 以一鍋化方式混合加入團簇物 [SeFe3(CO)9Cu2(MeCN)2] (1)、KOBut 和一系列咪唑啉鹽類 (1,3-dimethylimidazolium iodide (Me2Im•HI)、1,3-dimethylbenzimidazolium iodide (Me2BenzIm•HI)、1,3-diisopropylbenzimidazolium iodide (iPr2BenzIm•HI) 和 4,5-dichloro-1,3-dimethylimdazolium iodide (4,5-Cl2Me2Im•HI) 反應,分別得到化合物 [SeFe3(CO)9Cu2(Me2Im)2] (2)、[SeFe3(CO)9Cu2(Me2BenzIm)2] (3)、[SeFe3(CO)9Cu2(iPr2BenzIm)2] (4) 及 [SeFe3(CO)9Cu2(4,5-Cl2Me2Im)2] (5)。此外,於氧氣環境下化合物 1─5 可進行芳香環硼酸之耦合反應。其化合物之生成、催化反應及相關性質亦藉由理論計算進一步驗證。