理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    鎳/鈷/鉑(111)及鈷/鎳/鉑(111)系統其結構與磁性性質之研究
    (2006) 何慧瑩; Huei-Ying Ho
    本研究論文主要是利用歐傑電子能譜儀(Auger electron spectroscopy; AES),低能量電子繞射儀(low-energy electron diffraction; LEED),紫外光能譜術(ultra-violet photoemission spectroscopy; UPS)、以及磁光柯爾效應儀(magneto-optical Kerr effect; MOKE) 來研究Ni/Co/Pt(111) 及Co/Ni/Pt(111) 鏡像系統其成長模式、合金形成及表面磁性的關係。 根據LEED(0,0)光束強度及AES訊號強度隨蒸鍍時間變化的關係,我們得知在室溫條件下,無論是Ni超薄膜在1 ML Co/Pt(111) 上成長(ML: monolayer),或者是Co超薄膜在1 ML Ni/Pt(111)上成長時,都會先形成2層的層狀成長之後才開始3維的島狀成長。對此二系統而言,其升溫形成合金的過程都可被分成2階段,首先是升溫過程中,Co和Ni會先混合,然後Ni-Co混合層在更高溫時會擴散進入Pt基底,形成Ni-Co-Pt合金。其中,1-3 ML Ni/1 ML Co/Pt(111)系統開始產生Ni與Co混合的溫度皆為420 K,此溫度與Ni覆蓋層的厚度無關;然而對1-3 ML Co/1 ML Ni/Pt(111) 系統而言,產生Ni與Co混合的溫度隨Co覆蓋層的厚度增加而升高。此二系統的Ni-Co混合層開始擴散進入Pt基底形成Ni-Co-Pt合金的溫度,皆隨著覆蓋層的厚度增加而升高。 我們同時也量測在室溫成長時,其磁性隨覆蓋層厚度變化的關係。1層至24層Ni超薄膜在1 ML Co/Pt(111) 成長時,其磁化易軸(the easy axis of the magnetization)會在垂直樣品表面的方向,具有很強的垂直磁異向性(perpendicular magnetic anisotropy; PMA);1至3層Co原子層蒸鍍在1 ML Ni/Pt(111)上,無論是垂直或者是平行樣品表面我們皆量測不到磁滯的訊號,此現象可能與Ni緩衝層阻隔了Co與Pt接觸有關。樣品經過升溫效應所產生的磁性變化其擴散過程一致。經過高溫處理過後的樣品形成了Ni-Co-Pt合金,合金的矯頑力(coercivity)大小可經由升溫時產生的合金濃度變化來控制。 根據比較1 ML Ni/1 ML Co/Pt(111)與1 ML Co/1 ML Ni/Pt(111)的實驗結果,我們發現當退火溫度(annealing temperature)介於750 K 和780 K之間時,表面合金結構會由NixCo1-xPt轉變成NixCo1-xPt3,藉由計算接近居禮溫度(Curie temperature)時的值(critical exponent),我們得知此時表面的磁性結構亦由2維磁性結構的轉變成3維磁性結構,並且,在表面合金結構由NixCo1-xPt轉變成NixCo1-xPt3之時,居禮溫度隨退火溫度升高而下降的現象變得更明顯。此外,在相同退火溫度條件下,1 ML Ni/1 ML Co/Pt(111)系統的居禮溫度一直比1 ML Co/1 ML Ni/Pt(111)系統的居禮溫度高,我們認為這種現象與Ni、Co的成分比有關。我們也經由研究2 ML Ni/1 ML Co/Pt(111)、2 ML Co/1 ML Ni/Pt(111)、12 ML Ni/1 ML Co/Pt(111)、以及24 ML Ni/1 ML Co/Pt(111)等系統來探討Ni、Co的成分比對居禮溫度的影響。 另一組鏡像系統,2 ML Ni/2 ML Co/Pt(111)和2 ML Co/2 ML Ni/Pt(111),經過退火之後,我們意外地發現樣品產生了spin reorientation transition (SRT),這種現象在以1層Co及1層Ni當作緩衝層的系統中,完全沒有被發現過。我們認為Ni、Co的成分比及其分佈的均勻度應是造成此現象的重要因素,在本論文中我們會加以討論。
  • Item
    硫酸鈉與硼酸溶液對導電玻璃ITO上鍍鈷的影響
    (2012) 陳文賓; Wen-bin Chen
    本研究探討硫酸鈉與硼酸溶液對導電玻璃ITO上鍍鈷的影響。以循環伏安法找出適合的電鍍電壓,並改變不同的電解質輔助液探討對鈷膜表面的影響。我們藉由金相顯微鏡、原子力顯微鏡對鈷膜表面進行觀察,再以固定電鍍電壓的方式,分析得到電流對時間的關係,判定鈷在ITO上為接近瞬時成核的機制,並利用磁光柯爾效應測量鈷膜的磁性。 在實驗的過程中我們發現,電解質輔助液硫酸鈉以及硼酸各有其優缺點,硫酸鈉幫助我們決定所需要電鍍的電壓以及增加還原電流,硼酸輔助液不僅可以抑制產生Co的氫氧化物,它還能讓薄膜均勻成長。我們發現硼酸的濃度明顯影響Co島的結構,並進而改變磁性之量測結果。
  • Item
    濺鍍成長鐵鈷合金薄膜與大學近代物理實驗改進研究
    (2010) 林仟弘; Chang-Hong Lin
    本研究是利用射頻濺鍍的方式,在單晶矽(100)上成長鈷和鐵鈷合金薄膜,並配合大氣磁光柯爾效應儀進行磁性的量測,且配合原子力顯微鏡、掃描穿隧式電子顯微鏡,進行表面形貌量測,觀察濺鍍不同鐵磁性薄膜一系列的研究。 我們建立一套全新的射頻濺鍍系統,且成功利用此系統濺鍍Co/Si(100)及CoxFe1-x/Si(100)薄膜。實驗發現,改變濺鍍條件成長薄膜,濺鍍功率和工作壓力皆會影響薄膜成長速率。濺鍍功率及工作壓力的增加皆會使薄膜成長速率加快。 在以濺鍍功率50 W、工作壓力 4mTorr成長Co/Si(100)薄膜時,發現鈷膜表面有特殊的三角錐結構,尺度約為100 nm。而改變濺鍍條件則無此現象。此錐狀物是由底層鈷層的柱狀晶向上成長,成長的Co膜為HCP結構,且鈷膜平面平行 HCP結構上的c 軸,和我們在磁性量測發現易軸在縱向的結果呈現一致。 且實驗發現成長Co/Si(100)薄膜及Co0.4Fe0.6/Si(100)薄膜時,表面粗糙度隨薄膜成長會先下降再增加。另外由表面磁光科爾效應儀的磁性量測結果發現Co/Si(100)薄膜之矯頑力也隨薄膜厚度增加先下降再增加,和表面粗糙度有相同的趨勢,證實磁性薄膜表面粗糙度會影響磁性薄膜之矯頑力。 另外,我們也進行本系實驗物理(III)課程改進研究。由問卷調查發現新增選修實驗對學生學習上有很大的幫助,且學生可提早認識當前研究的趨勢幫助其未來規劃。另外,我們也就各項觀察提供建議的改善方針,以期提升實驗課的深度與廣度。
  • Item
    銀覆蓋層對鐵超薄膜在鉑(111)上的磁性影響
    (2007) 郭明憲; Ming-Hsien Kuo
    我們以自製的磁光柯爾效應儀(MOKE)探測Ag超薄膜覆蓋於Fe/Pt(111)樣品前後之表面磁性變化,並藉由歐傑電子能譜術(AES) 鑑別樣品表面組成成分、計算薄膜厚度,以及低能量繞射電子儀 (LEED)研究表面結構,利用升降溫系統與離子濺射進行退火效應與深度分析的實驗。 經由在1~3ML Fe/Pt(111)上逐漸覆蓋不同厚度的銀,發現Polar方向的磁性有增強,而Longitudinal方向有減弱的現象,且在Ag覆蓋達1ML之後就無太大變化。藉由離子濺射的過程,觀察磁性及歐傑訊號強度的變化,確認磁性改變的原因來自於Ag-Fe界面效應的作用。 將1ML Ag/1ML Fe/Pt(111)經由不同溫度的退火處理之後,在室溫量測其磁性與歐傑訊號,發現在低於600 K的退火溫度時,由於Fe原子與Pt原子的交換減弱了Ag-Fe介面引致PMA的作用,使得Polar方向的磁性慢慢消失。在退火溫度介於600 K~700 K之間時,由於Fe跟Pt開始形成合金,使得Polar與Longitudinal方向的柯爾訊號及Hc大幅的增加。當退火溫度超過700 K時,由於Fe原子往下擴散到更底層去而Pt原子往上浮出,以及Ag原子逐漸的退吸附,使得Ag-Fe介面的效應變得更弱,導致Polar方向及Longitudinal方向的磁性逐漸消失。
  • Item
    鐵在紅熒烯/矽(100)上磁性與結構之研究
    (2018) 謝祥予; Sie, Siang-Yu
    近年來研究指出,鐵磁性材料能受紅熒烯影響晶體結構,而本實驗室近年來研究亦指出鐵磁材料鈷受到紅熒烯介面影響到磁性表現,鐵磁材料鐵受到紅熒烯的影響,產生磁性與結構上的變化,成為本篇研究重點。本研究利用磁光柯爾效應儀、校內合作原子力顯微鏡與磁光柯爾顯微鏡、校外X光繞射與X光電子能譜儀,去探討射頻磁控濺鍍鐵薄膜在蒸鍍成長紅熒烯的系統於矽(100)之上。第一部分在鐵/矽(100)系統中,磁性量測矯頑力隨鐵薄膜厚度增加的變化,矯頑力從25奈米的60 Oe 巨幅上升至30奈米的120 Oe左右,而在鐵約27奈米設為轉變點,並透過X光繞射確認鐵薄膜40奈米以前為bcc結構排列;而在鐵/紅熒烯/矽(100)系統中透過加入不同厚度紅熒烯,觀察上層鐵薄膜的磁性變化,在紅熒烯厚度約1奈米,鐵的矯頑力上升轉變點的厚度提前,當紅熒烯厚度達4、12奈米,矯頑力上升的厚度提前至8奈米,透過X光繞射觀察在加入紅熒烯後發現,鐵薄膜bcc(110)的結晶性上升,其應力增加導致鐵薄膜磁異向能上升使矯頑力增加,而X光電子能譜發現鐵與紅熒烯之間產生介面效應,導致上層鐵薄膜的結構不同;第三部分觀察磁域翻轉模式在鐵薄膜厚度達15奈米以後為大片狀翻轉,在加入紅熒烯時鐵薄膜較薄時呈現細條狀翻轉,鐵薄膜27奈米以後則呈現大片狀翻轉,結合X光繞射分析晶粒大小與原子力顯微鏡分析顆粒在有無加入紅熒烯的不同導致磁域翻轉的變化。