理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 7 of 7
  • Item
    透過抑制穀胱苷肽過氧化酶4誘導Sorafenib阻抗之人類肝癌細胞株Huh7進行鐵依賴型細胞死亡
    (2020) 唐漢軒; Tang, Han-Hsuan
    肝癌是全世界主要的癌症死因之一。Sorafenib (蕾莎瓦®)為一種多激酶抑制劑,被許可做為肝癌病人的第一線藥物;然而,癌細胞產生的抗藥性減弱sorafenib的療效。由於對sorafenib阻抗的肝癌也對於細胞凋亡產生阻抗,所以探尋其它調控型細胞死亡是非常重要。鐵依賴型細胞死亡為一新穎的鐵依賴型非凋亡的調控型細胞死亡,已被報導可有效殺死多種癌症部位的藥物阻抗細胞。鐵依賴型死亡具有以下特徵:脂質過氧化修復功能受損、產生氧化還原活躍的鐵離子、以及多元不飽和脂肪酸的氧化。透過整合型生物資訊分析,我們發現鐵依賴型死亡參與肝癌細胞對sorafenib的阻抗,以及發現穀胱苷肽過氧化酶4 (GPX4) 為癌症的良好預後指標;此外, sorafenib阻抗的人類肝癌細胞株Huh7 (Huh7R) 相對Huh7具有較少的GPX4表現、異常的鐵恆定,以及較高的ACSL4表現,且對於GPX4抑制劑1S,3R-RSL3 (RSL3) 所誘導的鐵依賴型死亡更敏感。而且,添加細胞自噬抑制劑Bafilomycin A1可緩解在Huh7R中抑制GPX4所造成的鐵依賴型死亡。機轉層面而言,鐵蛋白藉由溶酶體降解提供具細胞利用性的鐵增強抑制GPX4所誘導的鐵依賴型死亡。總結而言,本研究證明抑制GPX4所誘導的鐵依賴型死亡是個有潛力用於對抗sorafenib阻抗肝癌的策略。
  • Item
    混合十五族(銻)與十六族(硫、硒、碲)之鐵羰基團簇化合物的合成、化性、物性與理論計算探討
    (2020) 葉信宏; Yeh, Hsin-Hung
    透過 [EFe3(CO)9]2─ (E = Te, Se, S) 與1當量三氯化銻 (SbCl3) 反應生成混合十五族(銻)與十六族(碲、硒、硫)之新穎鐵羰基團簇化合物 [{SbTeFe3(CO)9}{Te2Fe3(CO)9}]– (1), [{SbSeFe3(CO)9}{Se2Fe2(CO)6}]– (2) 與 [{SbSFe3(CO)9}{SFe3(CO)9}]– (3)。化合物 1-3 其結構可視為含[SbEFe3(CO)9] (E = Te, Se, S) 之四角錐型主體,其中的 Sb原子分別外接垂吊的 (pendant) 金屬羰基團簇物片段 [Te2Fe3(CO)9]、[Se2Fe2(CO)6] 及 [SFe3(CO)9]。根據高解析X-ray 電子能譜 (High resolution X-ray Photoelectron Spectroscopy, XPS) 、 X-ray吸收近邊緣結構光譜 (X-ray Absorption Near-Edge Structures, XANES) 發現,化合物 1-3 的 Sb 原子其氧化態為 0。此外,微分脈衝伏安法 (Differential Pulse Voltammetry, DPV) 的測量結果顯示,化合物 1-3 具有擬可逆還原峰位置分別在−0.484、−0.532及−0.586 V(W1/2 = 92、184 及112 mV),暗示化合物 1-3具有還原特性,因此,化合物 1-3 進一步與1當量 [Et4N][HFe(CO)4] 或 [K][HCr(CO)5] 反應時可得到金屬轉移化 (transmetalation) 的產物 [{SbEFe3(CO)9}{M(CO)x}]– (M(CO)x = Fe(CO)4, E = Te, 1-Fe; Se, 2-Fe; S, 3-Fe; M(CO)x = Cr(CO)5, E = Te, 1-Cr; Se, 2-Cr; S, 3-Cr),化合物 1-M (M = Fe, Cr)、2-M (M = Fe, Cr)、3-M (M = Fe, Cr) 其結構可視為四角錐型主體 [SbEFe3(CO)9] (E = Te, Se, S) 其中的 Sb原子分別外接下垂的 Fe(CO)4、Cr(CO)5 金屬片段。此外,當化合物 2 或 3 與 1 當量 [Et4N][Mn(CO)5] 進行反應時,則產生由 Mn(CO)4 橋接的耳墜型 (earring)化合物 [{SbEFe3(CO)9}2Mn(CO)4]– (E = Se, 2-Mn; S, 3-Mn)。化合物 2-Mn、3-Mn 其結構可視為Mn(CO)4 橋接兩個四角錐型主體 [SbEFe3(CO)9] (E = Se, S)。有趣的是當化合物 1‒3 與競爭試劑 PEt3反應時,高活性之四角錐型化合物 [SbEFe3(CO)9]– (E = Te, Se, S) 可透過高解析液相層析電噴灑游離質譜 (HR-ESI-MS) 測得,顯示 PEt3 相對於 [SbEFe3(CO)9]– (E = Te, Se, S) 有較強的親核性 (Nucleophility) 。最後,本研究也藉由 Density Functional Theory (DFT) 理論計算輔助研究含銻與 16 族元素之金屬團簇化合物 1、2、3、1-M (M = Fe, Cr)、2-M (M = Fe, Cr, Mn)、3-M (M = Fe, Cr, Mn) 之結構、電子特性與光學性質。此系列化合物能隙落於 0.88-1.35 eV,皆具有半導體性質。
  • Item
    含硒之過渡金屬 (鐵、銅) 聚合物的合成及物性與光降解有機物的反應性之探討
    (2020) 黃楷庭; Huang, Kai-Ting
    利用 [Et4N]2[SeFe3(CO)9] 及 [Cu(MeCN)4][BF4] 以當量比 1: 2 ,並分別與劑量的含氮配體 4,4’-dipyridine (dpy)、1,2-bis(4-dipyridyl)ethane (bpea) 或 4,4’-trimethylenedipyridine (bpp) 進行三組件 (three-components) 溶劑輔助研磨 (liquid-assisted grinding, LAG) 反應,可分別形成含硒之混合鐵銅羰基一維聚合物 [SeFe3(CO)9Cu2(L)3]n (L = 4,4’-dipyridine (dpy), 2)和[SeFe3(CO)9Cu2(L)]n (L = 1,2-bis(4-dipyridyl)ethane (bpea), 3; L = 1,2-bis(4-dipyridyl)ethene (bpee), 5)、二維聚合物 [SeFe3(CO)9Cu2(MeCN)(dpy)1.5]n (1), [SeFe3(CO)9Cu2(L)2.5]n (L = bpea, 4; L = bpee, 6) 和 [SeFe3(CO)9Cu2(L)2]n (L = 4,4’-trimethylenedipyridine (bpp), 8) 以及大環分子型化合物 [{SeFe3(CO)9Cu2}2(bpp)2] (7)。此系列聚合物亦可藉由溶劑輔助研磨方式 (LAG) 進行可逆的結構轉換。由固態反射式紫外/可見光光譜可得知聚合物 1─6 和 8 及化合物 7 皆具有半導體的特性。 基於聚合物 1─6 和 8 的半導體性質,欲利用其電子傳導特性進行光降解有機物。因此,本研究利用較穩定的聚合物2、4 和 8 對4-硝基苯酚 (PNP) 和甲基藍 (MB) 進行光照降解,實驗結果顯示聚合物 2、4 和 8 於水溶液中照射紫外至可見光波長的氙燈的條件下,可成功並快速的降解 4-硝基苯酚 (PNP) 和甲基藍 (MB),顯示此系列聚合物具有優異的光降解活性。此外,本系列 Se‒Fe‒Cu 聚合物之Cu 金屬的氧化態,亦藉由高解析率 X-ray 光電子能譜 (X-ray photoelectron spectroscopy, XPS) 和 Cu K-edge X-ray 吸收近邊結構光譜 (X-ray absorption near-edge spectroscopy, XANES) 進一步驗證,其結果顯示於聚合物 1─6 和 8 中的 Cu 原子氧化態介於 CuI 和 Cu0 之間並接近 Cu0 的中間氧化態,顯示聚合物中含硒之三鐵金屬團簇可提供並傳遞電子至 CuI 中心並經由含氮配體使其電子可有效的傳遞。
  • Item
    銀覆蓋層對鐵超薄膜在鉑(111)上的磁性影響
    (2007) 郭明憲; Ming-Hsien Kuo
    我們以自製的磁光柯爾效應儀(MOKE)探測Ag超薄膜覆蓋於Fe/Pt(111)樣品前後之表面磁性變化,並藉由歐傑電子能譜術(AES) 鑑別樣品表面組成成分、計算薄膜厚度,以及低能量繞射電子儀 (LEED)研究表面結構,利用升降溫系統與離子濺射進行退火效應與深度分析的實驗。 經由在1~3ML Fe/Pt(111)上逐漸覆蓋不同厚度的銀,發現Polar方向的磁性有增強,而Longitudinal方向有減弱的現象,且在Ag覆蓋達1ML之後就無太大變化。藉由離子濺射的過程,觀察磁性及歐傑訊號強度的變化,確認磁性改變的原因來自於Ag-Fe界面效應的作用。 將1ML Ag/1ML Fe/Pt(111)經由不同溫度的退火處理之後,在室溫量測其磁性與歐傑訊號,發現在低於600 K的退火溫度時,由於Fe原子與Pt原子的交換減弱了Ag-Fe介面引致PMA的作用,使得Polar方向的磁性慢慢消失。在退火溫度介於600 K~700 K之間時,由於Fe跟Pt開始形成合金,使得Polar與Longitudinal方向的柯爾訊號及Hc大幅的增加。當退火溫度超過700 K時,由於Fe原子往下擴散到更底層去而Pt原子往上浮出,以及Ag原子逐漸的退吸附,使得Ag-Fe介面的效應變得更弱,導致Polar方向及Longitudinal方向的磁性逐漸消失。
  • Item
    利用鐵和金輔佐含氮五員、七員、九員環化合物的生成
    (2012) 陳奕竹
    本論文共分成兩個部分: 第一部份: 金(I)離子催化8-苯基-5-N-2,3-環氧基-5-甲苯磺醯基-7-炔-1-醇得到(Z)-4-苯基-7-甲苯磺醯基-3,10-二氧-7-氮雙環[7.1.0]癸-4-烯化合物。以三氟甲磺酸與此含氮醚類九員環環氧化物反應得到7-苯基-4-甲苯磺醯基-8,10-二氧-4-氮雙環[5.2.1]-2-癸基三氟甲磺酸。當金(I)離子催化取代基為間位硝基苯或間位酯基苯時,得到(Z)-4-苯亞甲基-6-甲苯磺醯基-3,9-二氧-6-氮雙環[6.1.0]壬烷化合物。 第二部分: N-((2-羥甲基)環丙基)甲基)-4-甲基-N-(3-苯基丙-2-炔基)苯磺醯胺以鐵(III)進行環化反應得到(Z)-3-(氯(苯基)亞甲基)-4-環丙基-1-甲苯磺醯基吡咯啶。若反應物為二級醇衍生物則生成具有單一選擇性的(Z)-5-(氯(苯基)亞甲基)-6-甲基-3-苯磺醯胺-3-氮雙環[5.1.0]辛烷化合物。
  • Item
    含十六族(硒、碲)之過渡金屬(鐵、銅)聚合物的合成與小分子選擇性及物性之探討
    (2017) 何秉叡; Ho, Biing-Ruey
    Se,Te ‒Fe‒Cu‒p-DCB 系統 過去實驗室得一維單-雙股橋接 (singly-doubly linked) Z 字線型 (zigzag chain) 聚合物 [EFe3(CO)9Cu2(p-DCB)1.5]n (E = Te, 1a; Se, 1b)。另一方面,由固態反射式紫外光/可見光光譜可得知一系列含有客分子之聚合物 1a-S (S = toluene, m-xylene, p-xylene, ethylbenzene, pseudocumene, mesitylene, naphthalene) 之能隙範圍在 1.27‒1.41 eV,皆小於主體結構聚合物 1a (1.43 eV),顯示皆具半導體特性。   Se‒Fe‒Cu 系統 利用零維分子型環狀化合物 [{SeFe3(CO)9Cu}2(bpp)2] (1) 加入含氮配子 4,4’-trimethylenedipyridine (bpp) 研磨後,可得二維聚合物 [SeFe3(CO)9Cu2(bpp)2] (2)。此系列聚合物之能隙範圍為 1.51-1.65 eV,皆具有半導體之特性,其熱穩定區間為 90 至 175 oC 之間。此外,當化合物 [SeFe3(CO)9Cu2(MeCN)2] 與混合硫/氮之有機配子 4,4'-dipyridyl sulfide (tdpy) 研磨得到一維聚合物 [SeFe3(CO)9Cu2(MeCN)(tdpy)2]n (7)。
  • Item
    混合過渡金屬 (鉻、鐵) 之十五族 (銻、鉍) 錯合物與含十六族 (硫、硒、碲) 三鐵羰基汞銅陰陽離子聚合物之合成與其反應性及物性之探討
    (2017) 張惟傑; Chang, Wei-Chieh
    E‒Cr‒Fe 系統 (E = Sb, Bi) 過去已發表之平面化合物 [E{Cr(CO)5}3]‒ (E = Sb, 1; Bi, 2) 皆具有缺電子之不飽和性質,因此本研究進一步針對其路易士酸性、與親核試劑反應的差異進行探討。研究結果顯示,化合物 1 能與極弱親核試劑水 (H2O) 反應得路易士加成物 [(HO)Sb{Cr(CO)5}3]2‒ (1-OH),但化合物 2 則無反應。有趣的是,由高解析 X-ray 電子能譜 (HR-XPS) 得知化合物 1 之中心 Sb 原子氧化態為 0 價。當 2 與 [HFe(CO)4]‒ 反應時,可得四面體化合物 [{Fe(CO)4}Bi{Cr(CO)5}3]3‒ (2-Fe)。進一步以 2-Fe 與 [FeCp2][PF6] 反應會經過一中間物 [Bi{Cr(CO)5}2{Fe(CO)4}]‒ (3) 而後斷裂重組生成穩定產物 [{Cr(CO)5}2Bi2{Fe(CO)3}3]2‒ (4)。另一方面,化合物 1 與 [HFe(CO)4]‒ 反應則生成 [(H)Sb{Cr(CO)5}2{Fe(CO)4}]2‒ (1-Fe) 與 [(H)Sb{Cr(CO)5}3]2‒ (1-H) 之混合物。此外,當 1-Fe 與過量 HBF4 於室溫下反應,可得耦合 (coupling) 產物 [FSb2{Cr(CO)5}3{Fe(CO)4}2]‒ (6)。有趣的是,若將 1-Fe 與 1 當量 [CPh3][BF4] 於 ‒30 oC 下反應可得 [Sb2{Cr(CO)5}4{Fe(CO)4}2]2‒ (7)。若 1-Fe 與 [CPh3][BF4] 於室溫下反應,並提高 [CPh3][BF4] 之當量數,則可得到 6 與極少量 [(HO)Sb2{Cr(CO)5}3{Fe(CO)4}2]‒ (8)。推測化合物 7 為中間物,可進一步生成 F 或 OH 取代之化合物 6 與 8。最後,本研究藉由電化學及 density functional theory (DFT) 理論計算輔佐,探討此系列反應之機制及氧化還原行為。 E‒Fe-Hg-Cu 系統 (E = S, Se) 將 [PPh]4[SeFe3(CO)9] 及 Hg(OAc)2 以當量比 1: 2 於 −30 oC MeCN 中進行反應,可得 Hg 原子橋接兩個 SeFe3 團簇物之化合物 [PPh4]2[{(μ3-Se)Fe3(CO)9}Hg{(μ4-Se)Fe3(CO)9}] ([PPh4]2[2])。[PPh4]2[2] 進一步與過去已發表之銅一維聚合物 [{Cu(MeCN)2(dpy)}{BF4}]n (1) 利用液態輔助研磨 (liquid-assisted grinding) 方式進行陰離子交換反應,可形成團簇物 2 之結構異構物嵌入含混合一維及二維銅陽離子的聚合物 [{Cu(dpy)(MeCN)2}{Cu(dpy)1.5(MeCN)}{{(3-Se)Fe3(CO)9}2Hg}]n (4)。若以 [Et4N]2[{(3-S)Fe3(CO)9}2Hg] 與聚合物 1 利用研磨進行陰離子交換反應後,結晶可得含硫−銅進一步鍵結之配位聚合物 [{Cu(dpy)(MeCN)}2{(4-S)Fe3(CO)9}2Hg]n (3')。此外,進一步透過高解析 X-ray 電子能譜 (HR-XPS) 及 X-ray 吸收近邊緣結構光譜 (XANES),探討 EFe3Hg-Cu (E = S, Se, Te) 系列聚合物之銅原子氧化態。並由晶體固態堆疊圖發現,此系列聚合物皆具有分子間 C‒H…O 氫鍵,進一步證實電子傳遞之現象。