理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    L10-FePt奈米線陣列之垂直磁性自旋閥
    (2011) 張峻賢; Chun-Hsin Chang
    本研究利用孔洞為50 nm之陽極氧化鋁(AAO)作為模板,再以電化學沉積之方式合成出FePt奈米線陣列。藉由X光繞射儀(XRD)觀察FePt奈米線陣列於700oC與5% H2/N2之環境下進行熱退火時FePt奈米線陣列將從無序相之面心立方晶格fcc轉換為有序L10相,FePt奈米線陣列於有序相L10相其矯頑磁場約為7.5 kOe,利用熱退火之方式,使L10相FePt奈米線陣列至(001)方向之磁化易軸。而L10相FePt奈米線陣列之矯頑磁場遠大於Ni3Fe,故FePt/Cu/Ni3Fe奈米線陣列中之FePt固定層與Ni3Fe自由層之磁性差異性,即形成具功能性之開關元件。藉由此性質合成FePt/Cu/Ni3Fe與FePt/NiO/Ni3Fe多層結構之奈米線,即可觀察巨磁阻(GMR)之現象與垂直式磁性自旋閥效應,而多層L10-FePt奈米線陣列其特性可被應用於一維磁性奈米材料。
  • Item
    以計算探討鉑錫基催化劑在直接乙醇燃料電池陽極和陰極反應中的研究
    (2018) 顏劭晏; Yan, Shao-Yan
    本研究分陰極觸媒和陽極觸媒兩部分: PtSn雙金屬催化劑上的陰極氧還原反應(ORR)和陽極乙醇氧化反應(EOR)。在ORR的研究中,使用Pt(111)表面取代不同Sn比例來模擬PtSn催化劑。我們的計算發現,Sn取代越多,活性越高,這歸因於其較低的親氧性和相鄰Pt的d-band center;然而,越多的Sn由於結構扭曲降低穩定性。穩定性可以藉由錫氧化物修飾Pt表面進一步改善,在ORR過程中,這些氧化物對Pt表面吸附適中及強的斥力以保持結構。而在EOR的研究中,通過在PtSn中添加Ag形成三元PtSnAg催化劑來修飾PtSn雙金屬。Ag上的氧化物由於可以吸引解離的氫以及與OH有排斥效應可以有效改進關鍵步驟CH3CHO氧化成CH3COOH而促進了EOR。此外,氧化物可以增強乙醇在鄰近的Pt上的吸附以降低初始脫氫反應。
  • Item
    On-chip Fabrication of Well-aligned and Contact-barrier-free GaN Nanobridge Devices with Ultrahigh Photocurrent Responsivity
    (Wiley-VCH Verlag, 2008-07-01) R.-S. Chen; S.-W. Wang; Z.-H. Lan; J. T.-H. Tsai; C.-T. Wu; L.-C. Chen; K.-H. Chen; Y.-S. Huang; Chia-Chun Chen
    Building nanobridges: Direct integration of an ensemble of GaN nanowires (n) onto a microchip produces a viable nanobridge (NB) device with good alignment and contact performance, the design of which demonstrates the potential of nanowires for sensor development. These GaN NBs have strong surface-enhanced photoconductivity with ultrahigh responsivity
  • Item
    Characterization of Nanodome on GaN Nanowires Formed with Ga Ion Irradiation
    (Nihon Kinzoku Gakkai, 2004-01-01) S. Muto; S. Dahara; A. Datta; C.-W. Hsu; C.-T. Wu; C.-H. Shen; L. -C. Chen; K.-H. Chen; Y.-L. Wang; T. Tanabe; T. Maruyama; H.-M. Lin; Chia-Chun Chen
    Structure of nano-domes formed by Ga+ ion irradiation with a focused ion beam (FIB) apparatus onto GaN nanowires (NWs) was examined with conventional transmission electron microscopy (CTEM), electron energy-loss spectroscopy (EELS) and energy-filtering TEM (EF-TEM). The nano-dome consisted of metallic gallium, covered by a GaN layer, the structure of which is amorphous or liquid. It is considered that the dome structure is formed by preferential displacement of lighter element (N) and agglomeration of heavier one (Ga). 1 MeV electron irradiation onto the sample pre-irradiated by Ga+ ions at a dose below the threshold for the dome formation induced the N2 bubble formation without segregating Ga atoms, which suggests the radiation-enhanced diffusion (RED) of heavy atoms plays an important role in the nano-dome formation.