理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    廣義FB函數與其merit函數的幾何觀點
    (2011) 蔡懷潁; Huai-Yin Tsai
    在這篇論文,我們主要研究廣義FB函數與其merit函數的一些幾何性質.非線性互補問題可以化成等價的約束最小化問題. 利用曲線與曲面的觀點,我們能得到直觀的想法來分析descent演算法的收斂行為. 幾何觀點更進一步指出在merit函數的方法下如何設定參數以改良演算法.
  • Item
    以理論計算探討:I.氮氧化物在鎳(111)表面的反應機構II.一氧化氮在鎳-鉑雙金屬的分解反應III.二氧化碳在碳化鎢與碳化鎢-鈷合金表面反應探討
    (2012) 吳亘曜; Wu, shiuan-yau
    摘 要 第一部分 :氮氧化物(NOx)在Ni(111)表面的反應機構之探討 利用空間週期性來探討不同的氮氧化物(包含NO、NO2和N2O)在Ni(111)表面的反應機構,進一步討論到不同的覆蓋率下可能的變化。其中,在覆蓋率小的情況下,吸附的分子無論是NO、NO2和N2O都會完全分解成吸附態的N和O原子,而克服了2.34 eV的活化能之後,表面的N原子會再結合成N2分子從表面脫附。但是當覆蓋率不斷的提升之後,還沒有完全分解的NO和表面的N 原子會進行再結合,在高覆蓋率的情況下,N2O可能會進行脫附或者進一步斷N-O鍵形成N2分子。而在高覆蓋率的情況下會有N2O的副產物也可以從實驗的觀察得到證實。   第二部分: 一氧化氮(NO)在鎳-鉑雙金屬表面分解反應的探討 利用空間週期性來探討一氧化氮在Ni-Pt雙金屬表面的吸附與分解反應。其中,我們利用到的Ni-Pt雙金屬表面有: xNi@Pt(111), NixPt4-x(111), 和(4–x)Pt@Ni(111) ( x = 0~4)。 在所有的雙金屬表面當中,NO傾向被吸附在表面上有較多Ni原子的位置,而吸附能會隨著表面上Ni原子的數量增加而上升。另外,在我們所探討的所有雙金屬組成當中,當出現了表層的組成相同而內層不同的情況下,依不同的內層,NO分子吸附能的順序依次為xNi@Pt(111) > NixPt4-x(111) > (4 – x) Pt@Ni(111)表面,而NO斷鍵所需的活化能則剛好相反,換言之,在我們所有的表面當中,吸附能越大,斷NO鍵所需要的能障就越小。另外,我們也利用了局部電子態密度的分析來探討不同內層組成所造成雙金屬效益的原因。   第三部分:二氧化碳在碳化鎢WC(0001)和碳化鎢-鈷合金WC-Co表面反應探討 利用空間週期性探討二氧化碳在碳化鎢(0001)和碳化鎢-鈷合金表面的吸附。並進一步探討在不同鎢鈷比例的情況下,二氧化碳分解與氫化的趨勢。其中,碳化鎢(0001)表面有明顯的局域化現象,而當表面的組成結構改變,伴隨鈷原子的比例增加,會改變表面的局域化情形,進一步影響到吸附與反應的趨勢。而當鈷的覆蓋率為0.25ML的情況下,二氧化碳在WC-Co(0.25ML)有最佳的吸附能,而當鈷的覆蓋率增加到0.50ML,二氧化碳的吸附能雖然略減,但在該表面有最小的分解活化能。而氫化反應的活化能則是隨著表面鈷原子的比例增加而遞減,顯示鈷原子對氫化反應的幫助。而在這個部分,我們利用了電子局域化函數分析來探討表面局域化情況對二氧化碳催化反應的影響。
  • Item
    NOx ( x=1, 2) 吸附與分解反應在M(111) (M=Cu, Ir, CuIr) 表面之理論計算研究
    (2010) 顏美吟; Mei-Yin Yen
    第一部分 : NOx ( x = 1, 2)在Cu(111)表面之吸附與分解反應 我們使用週期性密度泛函理論來研究NOx ( x= 1, 2)在Cu(111)表面之吸附與分解反應,計算結果顯示NO2在表面上最穩定的吸附結構為μ-O,O´-nitrito,以兩個O原子接在表面Cu原子上,而NO2要進行分解時,會轉換成μ-N,O-nitrito結構,以N原子與一端O原子接在Cu原子上。NO2逐步分解反應第一步活化能為1.05 eV,第二步為2.08 eV,最後在表面上形成N(a) + 2O(a)。另外,我們也計算了三組NO分解的模型,分別為NO / Cu(111)、O + NO / Cu(111)以及N + NO / Cu(111),探討NO在三種環境中的分解能障。結果發現,有O原子共吸附時,NO的5σ軌域面積是三組中最大的,而有N原子共吸附時的5σ面積最小,代表NO在O-pre-adsorbed的環境下要行斷鍵反應最不易。計算三組NO斷鍵活化能:O + NO(2.08 eV)>NO(1.88 eV)>N + NO(1.28 eV),與先前計算吸附後NO的5σ軌域面積大小呈線性關係。 第二部分 : NO在Cu(111)、Ir(111)、Ir@Cu(111)、Cu@Ir(111)表面的吸附與分解反應   我們使用週期性密度泛函理論來研究NO在單金屬Cu(111)與Ir(111)以及雙金屬Ir@Cu(111)、Cu@Ir(111)表面之吸附與分解反應,其中雙金屬表面又分不同比例(在M(111)表層分別取代1、5、9顆之M´)的金屬取代。計算結果發現,NO在Ir(111)純金屬表面的吸附與分解皆較Cu(111)容易。比較雙金屬Ir@Cu(111)系列,吸附的部分以1Ir@Cu(111)表面可得到最大的NO吸附能(-2.56 eV),而分解的部分則是在5Ir@Cu(111)表面有最低的活化能(0.76 eV)。另外,比較Cu@Ir(111)系列,吸附的部分以5Cu@Ir(111)表面可得到最大的NO吸附能(-2.72 eV),而分解的部分同樣在5 Cu@Ir(111)表面有最低的活化能(1.26 eV)。不論是Ir@Cu(111)或Cu@Ir(111)系列,在NO吸附的選擇上,皆是偏好在Ir原子位置上,而NO斷鍵部分也發現在雙金屬表面上大部分有低於純金屬表面的活化能,除了1Ir@Cu(111)表面外。
  • Item
    理論計算探討乙醇在2Ru/ZrO2(111)表面之脫氫反應
    (2009) 陳育偉; CHEN,YU-WEI
    本論文分為兩大主題: 第一部分:乙醇在2Ru/ZrO2(111)表面之脫氫反應 我們使用週期性的密度泛函理論來研究乙醇在2Ru/ZrO2(111)表面催化下之脫氫反應,我們計算出來乙醇有最大吸附能的結構是以乙醇的O原子接在表面的Ru原子上,而這個結構接續的反應會經由O-Ru路徑,即斷鍵的順序是:O-H鍵→βC-H鍵→C-O鍵而最後得到乙烯吸附在表面上;另外一個有第二大吸附能的結構是以乙醇的αC原子吸附在表面的Ru原子上,這個結構接續的反應會經由αC-Ru路徑,即斷鍵的順序是:αC-H鍵→O-H鍵→(βC-H鍵) →C-C鍵而最後得到氫氣。最後,我們也計算了吸附在表面上的H原子結合成氫氣的反應位能面,其所計算出來的能障大約是20-30 kcal/mol。這個結果象徵著使用參雜Ru的ZrO2表面可能是個頗為有效的催化劑來催化乙醇的脫氫反應。 第二部分:在ZrO2表面參雜Ru與否對催化乙醇脫氫反應的影響 我們使用週期性的密度泛函理論來研究乙醇在ZrO2(111)表面以及2Ru/ZrO2(111)表面催化下之脫氫反應的差別,發現在ZrO2(111)表面脫氫反應所需克服的活化能比在2Ru/ZrO2(111)表面還要高,特別是斷βC-H鍵的過程,其活化能的差距為36.05 kcal/mol,這導因於斷βC-H鍵產生的吸附物非常的不穩定。試著了解造成這個現象的原因,我們做了態密度以及變形能的分析,而分析的結果發現這導因於兩個因素:(1) 乙醇的O、C原子與2Ru/ZrO2表面的Ru原子的作用力強過與ZrO2表面的Zr原子的作用力;(2) 乙醇在ZrO2(111)表面催化下斷βC-H鍵所得到的吸附結構,其表面的變形能比起在2Ru/ZrO2(111)表面催化下的情形大很多(30.41 kcal/mol)。
  • Item
    理論計算探討在 2Ru/γ-Al2O3(110) 表面之乙醇脫氫及水氣轉移反應機構
    (2009) 廖正豪; Cheng-Hao Liao
    本篇論文我們利用週期性密度泛函數理論(DFT)的計算方法,探討在2Ru/γ-Al2O3(110)表面上對於乙醇脫氫以及水氣轉移(WGS)的反應機構。我們計算出乙醇最穩定的吸附結構是乙醇以氧端吸附於表面的Al原子上,βC端靠近表面的Ru原子,我們將此位向的乙醇脫氫路徑稱為βC path。此路徑的斷鍵順序為βC-H鍵 → C-O鍵,而其活化能為:0.109 → 1.159 eV,最後形成CH2CH2(a) + OH(a) + H(a)在表面上。第二穩定的乙醇吸附位向是以氧端吸附於表面的鋁原子上,αC端靠近表面的Ru原子,此脫氫路徑稱為αC path,此路徑最主要的斷鍵順序為αC-H鍵 → O-H鍵 →αC-H鍵 → C-C鍵 → βC-H鍵,而其活化能為:0.234 → 0.992 → 0.349 → 0.899 → 0.223 eV,最後產生CH2 (a) + CO(a) + H(a)在表面上。結果顯示理論計算與實驗上相符合。 水氣轉移反應的機制主要分為兩種:(1) carboxyl mechanism; (2) redox mechanism。在進行水氣轉移反應前我們先計算出一個一氧化碳與一個水分子在表面吸附能最佳的位置。水氣轉移反應第一步的水分子解離後不管是經由carboxyl mechanism或是redox mechanism反應都會遇到2 eV以上的能障導致反應無法繼續。於是採用將三個水分子同時吸附在表面上第一層的三個鋁原子上與一氧化碳進行水氣轉移反應。 計算三個水分子的系統後我們發現在2Ru/γ-Al2O3(110)表面上的水氣轉移反應較傾向經由redox mechanism路徑。此路徑會先進行 OH(a) → H(a) + O(a)步驟,活化能大小為1.219 eV;接下來會經由 CO(a) + O(a) → CO2(a) 產生二氧化碳,其活化能為1.497 eV。而carboxyl mechanism路徑的活化能比redox mechanism高,且中間產物也較不穩定。