運動與休閒學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/6

為配合我國社會變遷與體育發展及本校的轉型與發展,本學院於90年8月正式成立,並將原屬本校教育學院之體育學系(所)、運動競技學系、運動與休閒管理研究所調整成立運動與休閒學院,並於95學年度增設運動科學研究所:為提升本院競爭力於101學年度運動競技學系與運動科學研究所整併為「運動競技學系」,運動與休閒管理研究所與管理學院餐旅管理研究所整併為「運動休閒與餐旅管理研究所」。

News

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    The dynamic analysis of the applied force on javelin during final thrust by an elite javelin thrower
    (2006-07-18) 黃長福; Guo-Hong Gu; Yeh-Jung Tsai; Chenfu Huang
    According to the javelin rules, a throw is valid only if the tip strikes the ground before any other part of the javelin. So it is important to precisely control the applied force on javelin for further distance and tip-first landing. Two synchronized Redlake high-speed cameras (250 Hz) were used to videotape an elite thrower; a javelin with three fixed non-collinear markers was used in experiment. The aerodynamics and Newton-Euler equation were taken into account in the 3D inverse dynamic analysis. The results showed that the force was mainly on the axial direction as the whole hand gripped the javelin. However, as the portion of hand touching the javelin became lesser, the direction of force was changed from axial to lateral direction. The lateral torque was significantly larger than axial torque during the whole phase, and their maxima were 24.08 and 1.31 Nm, respectively. The results measured by this method were similar to those by force sensor, and it could be suitable for use in further researches.
  • Item
    The calculation on the rotational kinematics about the longitudinal axis of javelin by three methods
    (2005-08-27) 黃長福; Guo-Hong Gu; Yeh-Jung Tsai; Chen-Fu Huang
    The motion of javelin is complicated after it is released. Itis necessary to use some skills to calculate the rotation kinematics about the longitudinal axis of javelin. In this study, the Euler angle, the Cardan angle and the screw axis methods were used to calculate these kinematic variables. Two synchronized Redlake high-speed cameras (250 Hz) and a javelin with three fixed reflective markers were used in the experiment. Generally the results by three methods were close, and all of the three methods are suitable for the calculation on these variables. In the Euler angle and Cardan angle methods, the order of rotation sequence needs to be taken account, however no similar problem occurred in screw method. The results suggested that the longitudinal axis should be set as second axis in either Euler angle or Cardan angle methods to avoid Gimbal Lock (singularity) problem.
  • Item
    The biomechanical analysis of the taekwondo front-leg axe-kick
    (2005-08-27) 黃長福; Yeh-Jung Tsai; Guo-Hong Gu; Chia-Jung Lee; Chen-Fu Huang; Chien-Lu Tsai
    The purpose of the study was to analyze the biomechanics of taekwondo front-leg axekick. One force plates, two synchronized high-speed cameras were used to measure biomechanical parameters in each phase of the front-leg axe-kick. The results included: 1. The average reaction time and movement time were 0.423 sand 0.327 s, which respectively occupied about 56% and 44% of attack time. 2. The maximum velocity of hip, knee and ankle were 1.74 m/s, 5.25 m/s and 7.43 m/s respectively. When the kicking leg touched the target, the velocity of knee and ankle were 0.78m/s, 1.72m1s, and 4.64m1s respectively. 3. The peak vertical GRF and impulse were 0.96 SW and 77.57N-s. For decreasing the movement time, it's suggested that an athlete should increase the power and flexibility of lower extremities during the training section.