光電工程研究所

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/63

本所於民國91年成立碩士班,94年成立博士班。本所成立之宗旨及教育目標在於培育符合社會所需的光電科技專業人才,本所發展目標在於實現學界對於國內產業的關懷與參與之願景,並朝向「產業知識化、知識產業化」的發展趨勢與需求邁進。近年來,本校已轉型為綜合研究型大學,依據校務整體發展計畫與本所發展策略規劃之需求,將能提供本所未來發展之參考與願景。

本所研究方向 :
一、光電材料與元件模組
二、奈米生醫及醫學影像

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    雙層鐵電氧化鉿鋯於平面式與環繞式閘極電晶體之特性研究
    (2021) 江仕弘; Chiang, Shih-Hung
    近年來,由於鐵電材料具有雙穩態特性,在記憶體領域得到廣泛的研究,鉿基氧化物的鐵電材料由於具有與CMOS製程相容,取代傳統鐵電材料鈣鈦礦成為研究的主流,因此本論文研究鉿鋯氧化物(HfZrO2, HZO)作為鐵電記憶體的應用。此論文首先調控鐵電電容器(Metal/Ferroelectric/Metal, MFM)的電極,鉬(Mo)電極與氮化鈦(TiN)電極相比具有低熱預算、增強鐵電特性(殘餘極化)與降低操作電壓。第二部份為雙層HZO之場效電晶體(ferroelectric FET, FeFET)結構來演示多位元特性於多階記憶體(Multi-Level Cell, MLC)應用。最後,將二氧化矽和多晶矽沉積於矽晶圓上來取代絕緣層上覆矽(Silicon On Insulator, SOI)晶圓,之後使用原子層沉積(Atomic Layer Deposition , ALD)沉積雙層HZO包覆整個通道來製作環繞式閘極電晶體,並在雙層HZO中的夾層,設計氧化鋁(Al2O3)和TiN兩種材料,其中量測結果顯示於Al2O3與TiN相比具有優異的記憶窗口,但是需要較大的操作電壓。
  • Item
    鐵電氧化鉿鋯於環繞式閘極電晶體(GAA)及用於疊接氮化鎵高電子遷移率電晶體(HEMT)
    (2020) 張靖; Chang, Ching
    近年來隨著智慧型手機、物聯網(IoT)的發展,元件都必須具有體積小、高效能等特點,目前可以透過鰭式電晶體、環繞式閘極電晶體等多閘極電晶體,使閘極能夠有效控制元件,降低漏電流,解決元件尺寸持續微縮,所造成的短通道效應,以延續摩爾定律(Moore’s Law);5G通訊、電動車發展之下,功率元件需求大增,由於氮化鎵材料耐高溫高壓,並且具有的極高電子遷移率和寬能隙等特性相當符合功率元件使用。 本論文分為三個部分,第一部分實驗,在矽基板上堆疊二氧化矽和多晶矽用來取代 SOI 晶圓以降低成本,並以鐵電材料Hf1-xZrxO2 (HZO) 作為介電層,其中介電層分為兩種,一種為單層Hf0.5Zr0.5O2 ,另一種以2層Hf0.5Zr0.5O2 夾著Al2O3 ,應用於環繞式閘極電晶體,進行 Endurance和Retention量測。第二部分探討GaN 高電子遷移率電晶體(HEMT)的元件特性。最後一部分將鐵電電晶體與氮化鎵HEMT疊接,利用鐵電材料之負電容效應,改善次臨界擺幅(SS),並且提升臨界電壓,使氮化鎵HEMT變為增強型(E-mode),讓此疊接電路同時具備氮化鎵HEMT和鐵電電晶體之特性。