最佳化B-spline神經網路近似非線性函數-使用基因演算法
dc.contributor | 國立臺灣師範大學電機工程學系 | zh_tw |
dc.contributor.author | 張貞觀 | zh_tw |
dc.contributor.author | 王偉彥 | zh_tw |
dc.date.accessioned | 2014-10-30T09:28:24Z | |
dc.date.available | 2014-10-30T09:28:24Z | |
dc.date.issued | 2003-03-14 | zh_TW |
dc.description.abstract | 在本文中,吾人提出一種利用最佳化B-spline類神經網路來近似非線性函數的方法。傳統的B-spline函數是固定基礎函數,然而本文是利用基因演算法來對 B-spline類神經網路的基礎函數及控制點做最佳化的調整。而且基因演算法可以藉由突變的運算,跳脫一般學習法則(如梯度下降法)在學習過程中可能會落入區域極值,無法找到系統的最佳值的問題。染色體由實數的方式組成,包括了B-spline類神經網路中的Knot向量及控制點。藉著B-spline區間調整的特性,使系統作細微的調整。最後以模擬例子驗證本論文方法的功效。 | zh_tw |
dc.description.abstract | In this paper, we propose an optimal B-spline neural network to approximate a nonlinear function. Traditionally, a B-spline function has fixed-form blending functions. Genetic algorithms are used to optimize the blending functions and the control points of B-spline neural networks. The mutation operator in genetic algorithms can avoid falling into local minimum during the learning process. Chromosomes include the knot vectors and the control points of a B-spline neural network. Since the local tuning property, the fine-tuning ability of a B-spline neural network can be obtained. Finally, the simulation results demonstrate the effectiveness of the proposed method. | en_US |
dc.identifier | ntnulib_tp_E0604_02_074 | zh_TW |
dc.identifier.uri | http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/32051 | |
dc.language | chi | zh_TW |
dc.relation | 2003中華民國自動控制研討會 | zh_tw |
dc.relation | 2003 Automatic Control Conference, pp. 1274-1278 | en_US |
dc.subject.other | 類神經網路 | zh_tw |
dc.subject.other | 向量 | zh_tw |
dc.subject.other | 基因演算法 | zh_tw |
dc.subject.other | 非線性函數 | zh_tw |
dc.subject.other | 最佳化 | zh_tw |
dc.subject.other | 模擬 | zh_tw |
dc.subject.other | Neural network | en_US |
dc.subject.other | Vector | en_US |
dc.subject.other | Genetic algorithm (GA) | en_US |
dc.subject.other | Nonlinear function | en_US |
dc.subject.other | Optimization | en_US |
dc.subject.other | Simulation | en_US |
dc.title | 最佳化B-spline神經網路近似非線性函數-使用基因演算法 | zh_tw |