神經網路為基礎之無線通訊系統設計

dc.contributor黃政吉zh_TW
dc.contributorHuang, Jeng-Jien_US
dc.contributor.author邱瀚輝zh_TW
dc.contributor.authorChiu, Han-Huien_US
dc.date.accessioned2023-12-08T07:47:17Z
dc.date.available2023-07-25
dc.date.available2023-12-08T07:47:17Z
dc.date.issued2023
dc.description.abstract在數據處理時代,機器學習一直是一個熱門話題。 從Google的AlphaGo,在幾年前擊敗了包括圍棋冠軍在內的眾多職業圍棋選手,到最近基於transformer的強大和知名的聊天機器人ChatGPT,都能看到機器學習的應用。這篇論文使用了捲積神經網路替代傳統通訊系統中的發射器與接收器,並使用加性高斯白雜訊作為通道。整個實驗過程使用MATLAB進行,如結果所示,基於機器學習的通訊系統能勝過使用傳統架構(捲積碼及正交振幅調變)的通訊系統。zh_TW
dc.description.abstractArtificial intelligence (AI) has been widely used in many applications such as image recognitions. In this thesis, a convolution neural network (CNN) is investigated, which is used to replace both a transmitter and a receiver in a conventional communication system where an additive white Gaussian noise (AWGN) channel is assumed. As a CNN possesses a shift invariant property, it can avoid the curse of dimensionality. On the other hand, as demonstrated by numerical results obtained from MATLAB, a CNN is able to outperform a conventional communication system, in which the channel coding, i.e., a convolutional code, and the modulation are used.en_US
dc.description.sponsorship電機工程學系zh_TW
dc.identifier61075013H-43626
dc.identifier.urihttps://etds.lib.ntnu.edu.tw/thesis/detail/3d1e70f8762906bb202fe78197fbefde/
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/120334
dc.language英文
dc.subject訊號處理zh_TW
dc.subject通道編碼zh_TW
dc.subject訊號調變zh_TW
dc.subject神經網路zh_TW
dc.subjectSignal Processingen_US
dc.subjectChannel Encodingen_US
dc.subjectModulationen_US
dc.subjectNeural Networken_US
dc.title神經網路為基礎之無線通訊系統設計zh_TW
dc.titleCommunication Systems based on Neural Networksen_US
dc.typeetd

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
202300043626-105942.pdf
Size:
2.31 MB
Format:
Adobe Portable Document Format
Description:
etd

Collections