Compact Ant Colony Optimization Algorithm Based Fuzzy Neural Network Backstepping Controller for MIMO Nonlinear Systems

dc.contributor國立臺灣師範大學電機工程學系zh_tw
dc.contributor.authorW.-Y. Wangen_US
dc.contributor.authorC.-K. Chenen_US
dc.contributor.authorY.-G. Leuen_US
dc.contributor.authorC.-Y. Chenen_US
dc.date.accessioned2014-10-30T09:28:19Z
dc.date.available2014-10-30T09:28:19Z
dc.date.issued2010-07-03zh_TW
dc.description.abstractIn this paper, a compact ant colony algorithm used to tune parameters of fuzzy-neural networks is proposed for function approximation and adaptive control of nonlinear systems. In adaptive control procedure for nonlinear systems, weights of the fuzzy neural controller are online adjusted by the compact ant algorithm in order to generate appropriate control input. For the purpose of evaluating the stability of the closed-loop systems, an energy fitness function is used in the ant algorithm. Finally, a computer simulation example demonstrates the feasibility and effectiveness of the proposed method.en_US
dc.description.urihttp://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5551754zh_TW
dc.identifierntnulib_tp_E0604_02_018zh_TW
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/31995
dc.languageenzh_TW
dc.relationInternational Conference on System Science and Engineering in Taiwan, pp. 146-149en_US
dc.subject.otherant colony algorithmen_US
dc.subject.otherfuzzy neural networksen_US
dc.subject.otheradaptive controlen_US
dc.titleCompact Ant Colony Optimization Algorithm Based Fuzzy Neural Network Backstepping Controller for MIMO Nonlinear Systemsen_US

Files

Collections