氮化銦鎵量子井結構應用於太陽能電池及其特性研究

No Thumbnail Available

Date

2011

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

本論文中將氮化銦鎵量子井磊晶成長於圖案化藍寶石基板上來提升太陽能電池轉換效率。與傳統的太陽能電池結構比較之下,差排缺陷(threading dislocation)密度可以從1.28×109 降低至3.62×108cm2,使得太陽能電池的短路電流(Isc)提升60%。此外,氮化銦鎵量子井太陽能電池磊晶於圖案化藍寶石基板與一般的藍寶石基板其開路電壓(Voc=2.05V)與填充因子(FF=51%)幾乎相同。我們歸納元件效能的提升主要是磊晶層結晶品質的改善,其減少量子井中非輻射複合中心對光致載子的侷限效應,最終提升光致載子傳輸至元件外部的整體效率。
This study demonstrated the enhanced conversion efficiency of an indium gallium nitride (InGaN) multiple quantum well (MQW) solar cell fabricated on a patterned sapphire substrate (PSS).Compared to conventional solar cells grown on a planar sapphire substrate, threading dislocation defects were found to be reduced from 1.28×109 to 3.62×108cm2, leading to an increase in short-circuit current density (JSC 1.09 mA/cm2) of approximately 60%. In addition, the open-circuit voltage and fill factor (VOC=2.05 V; FF = 51%) of the solar cells grown on PSS were nearly identical to those of conventional devices. The enhanced performance is primarily due to improvements in the crystalline quality of the epitaxial layers, reducing the trapping of photogenerated electrons and holes by nonradiative recombination centers in MQW, with a corresponding increase in the transport efficiency of the carriers outside the device.

Description

Keywords

太陽能電池, 氮化銦鎵, 圖案化藍寶石基板, solar cell, InGaN, patterned sapphire substrate(PSS)

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By