語意分類及其應用於兩輪機器人控制
dc.contributor | 呂藝光 | zh_TW |
dc.contributor | Leu, Yih-Guang | en_US |
dc.contributor.author | 唐凡 | zh_TW |
dc.contributor.author | Tang, Fan | en_US |
dc.date.accessioned | 2020-12-14T08:53:31Z | |
dc.date.available | 2020-09-03 | |
dc.date.available | 2020-12-14T08:53:31Z | |
dc.date.issued | 2020 | |
dc.description.abstract | 本論文目的在建構一語意分類系統,使指令不單局限在單一詞彙或單一描述,例如指令旋轉之後前進及前進之前旋轉視為同樣意思,使機器人不是單純的判斷關鍵詞的順序而是使機器人能夠自行判斷語意後執行動作,讓所接受的指令更為靈活且多樣。語意分類系統建構是先以文字語句作為訓練資料,將詞彙透過詞嵌入的方式轉為數據。接著,使用神經網路進行分類訓練,主要以卷積類神經網路(Convolutional Neural Network, CNN)、長短期記憶(Long Short-Term Memory, LSTM)這兩種神經網路進行建模,CNN 具有優秀的特徵擷取及處理能力,LSTM 則在序列表現異,透過實驗比較這兩種方法,並選擇結果較好的架構應用於兩輪機器人。 | zh_TW |
dc.description.abstract | The purpose of this paper is to construct a semantic classification system.The instructions are not limited to a single vocabulary or a single description, and the instructions that the robot can accept are more flexible. The construction of semantic classification system mainly needs to be modeled with two types of neural networks: Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). CNN has excellent feature extraction and processing power, and LSTM has excellent performance in sequence. For comparison, some experiments are performed for two neural networks. Finally, the semantic classification is implemented in a two-wheeled robot. | en_US |
dc.description.sponsorship | 電機工程學系 | zh_TW |
dc.identifier | G060775049H | |
dc.identifier.uri | http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G060775049H%22.& | |
dc.identifier.uri | http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/110780 | |
dc.language | 中文 | |
dc.subject | 語意分類 | zh_TW |
dc.subject | 卷積神經網路 | zh_TW |
dc.subject | 長短期記憶 | zh_TW |
dc.subject | Semantic classification | en_US |
dc.subject | CNN | en_US |
dc.subject | LSTM | en_US |
dc.title | 語意分類及其應用於兩輪機器人控制 | zh_TW |
dc.title | Semantic Classification and Its Application in Two-wheeled Robot Control | en_US |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 060775049h01.pdf
- Size:
- 5.67 MB
- Format:
- Adobe Portable Document Format