超高容量氧化鋅近場光碟片之動態測試及分析
No Thumbnail Available
Date
2007
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
在本論文中,我們將針對當記錄點小於繞射極限時可複寫型DVD(DVD+RW)氧化鋅近場光碟片之載子雜訊比(Carrier to Noise Ratio, CNR)做分析,並且從中看出加上氧化鋅近場光學作用層後對小於繞射極限之記錄點的明顯解析能力,同時將研究其和一般市售光碟測試機的相容能力,最後再探討在不同間隔層(spacing layer)厚度下氧化鋅近場光碟片的行為表現,並進一步找出當記錄點大小為100nm時最佳寫入功率為23mW、最佳讀取功率為4mW及最佳間隔層厚度為60nm。
For the application and realization of near-field optical disk, we use a prototypical commercial optical disk driver to measure and analyze the carrier to noise ratio (CNR) of recording mark trains on ZnOx-type near-field optical disk. The CNR value of recoding mark trains of 100nm can be achieved to 33dB.In the further studies, we change the layered structure of ZnOx-type near-field optical disk and optimize the write strategy of commercial optical disk driver. By the change of different thickness of dielectric spacer (ZnS-SiO2), the interaction between the ZnOx near-field active layer and phase-change material is studied. From the experimental results, the optimized layered structure can be obtained as DVD+RW\ ZnS-SiO2 (130nm)\ ZnOx (15nm)\ ZnS-SiO2 (60nm)\ Ge2Sb2Te5 (20nm)\ ZnS-SiO2 (20nm) with bonding.
For the application and realization of near-field optical disk, we use a prototypical commercial optical disk driver to measure and analyze the carrier to noise ratio (CNR) of recording mark trains on ZnOx-type near-field optical disk. The CNR value of recoding mark trains of 100nm can be achieved to 33dB.In the further studies, we change the layered structure of ZnOx-type near-field optical disk and optimize the write strategy of commercial optical disk driver. By the change of different thickness of dielectric spacer (ZnS-SiO2), the interaction between the ZnOx near-field active layer and phase-change material is studied. From the experimental results, the optimized layered structure can be obtained as DVD+RW\ ZnS-SiO2 (130nm)\ ZnOx (15nm)\ ZnS-SiO2 (60nm)\ Ge2Sb2Te5 (20nm)\ ZnS-SiO2 (20nm) with bonding.
Description
Keywords
氧化鋅, 近場光碟片, 商用光碟測試機, 商業片, 三層片, near-field optical disk, ZnOx, CNR, DDU-1000, ITRI Commercial Disc Driver