兩人對向間隙穿越的行動因應
No Thumbnail Available
Date
2014
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
個體朝向目的地的移動過程,持續地覺察可能產生碰撞之障礙物,並維持行動時的安全範圍,其可使個體從容地調整步態或肢段位置,以因應阻礙行走的物體或他人,此為個人空間的概念。本研究結合生態取向與個人空間的觀點,欲瞭解受視覺訊息調控的移動行為,與社會環境賦使知覺的交互作用,進一步探究環境對於因應行為的影響,同時檢證個人空間調控移動行為之議題。本研究共招募24名健康男性為實驗參與者,兩兩分派為一組,實驗中要求兩名參與者,同時跟隨聲響節拍且對向步行穿越間隙,過程中避免碰撞他人或物體。本實驗的自變項有:(一) 移動速度:參與者跟隨不同速率之聲響節奏方式,表現出較快及較慢的步頻 (100與130 步/分鐘) 及不同步行速度;(二) 空間限制程度:分別為參與者們肩寬總合的0.9、1.1、1.3、及1.5倍寬度進行間隙寬度的操弄。本研究使用三維動作捕捉系統擷取動作資料,計算個人空間範圍以及肩膀旋轉角度,進而探討兩人對向穿越間隙的因應行為,將實驗所得資料進行相依樣本二因子變異數分析。研究結果顯示個體以不同速度步行穿越四種寬度的間隙,偏好維持固定的個人空間,其縱向距離不受到速度快慢及間隙寬窄的影響,但橫向安全界線則受到空間限制的影響而改變;當二人同時穿越間隙時,彼此的肩膀旋轉角度會因為對方與門板的空間變窄,而增加通過時肩膀旋轉的幅度。本研究歸結上述發現,社會環境賦使與個人空間對於穿越間隙的移動行為具有調節的功能。
Moving to the destination, human must perceive potential collision continually, and maintains personal space (PS) to modulate segmental displacement or gait-pattern. PS is a flexible safe zone around oneself and leads walker adapt obstacles or other pedestrian. Ecological approach and concept of PS were used to investigate how the environment affect adaptive behavior and to know social affordance perception in human locomotor behavior. Twelve pairs of participants were recruited. They were demanded to walk through apertures face-to-face based on setting rhythm and avoid collision with door plank and the other participant. Experimental manipulation included stride frequency (100 and 130 steps/min) and aperture width (0.9, 1.1, 1.3, and 1.5 times of pairs shoulder width amount). Trunk and feet movement data were recorded by motion capture system. Shoulder rotation angle, antero-posterior axis distance, and lateral axis distance were calculated to define adaptive behavior and PS while two walkers pass through apertures simultaneously. It was found that participants prefer to keep a safety personal distance. Antero-posterior axis radii were not affected by the walking speed and aperture width, but the safety distance in lateral axis would vary with aperture widths. When a pair of walkers passed through the door aperture at the same time, they performed lager shoulder rotation magnitude in wider door aperture. Shoulder rotation magnitude was regulated by the width of aperture.
Moving to the destination, human must perceive potential collision continually, and maintains personal space (PS) to modulate segmental displacement or gait-pattern. PS is a flexible safe zone around oneself and leads walker adapt obstacles or other pedestrian. Ecological approach and concept of PS were used to investigate how the environment affect adaptive behavior and to know social affordance perception in human locomotor behavior. Twelve pairs of participants were recruited. They were demanded to walk through apertures face-to-face based on setting rhythm and avoid collision with door plank and the other participant. Experimental manipulation included stride frequency (100 and 130 steps/min) and aperture width (0.9, 1.1, 1.3, and 1.5 times of pairs shoulder width amount). Trunk and feet movement data were recorded by motion capture system. Shoulder rotation angle, antero-posterior axis distance, and lateral axis distance were calculated to define adaptive behavior and PS while two walkers pass through apertures simultaneously. It was found that participants prefer to keep a safety personal distance. Antero-posterior axis radii were not affected by the walking speed and aperture width, but the safety distance in lateral axis would vary with aperture widths. When a pair of walkers passed through the door aperture at the same time, they performed lager shoulder rotation magnitude in wider door aperture. Shoulder rotation magnitude was regulated by the width of aperture.
Description
Keywords
環境賦使, 行走步態調整, 個人空間, 肩膀旋轉, affordances, gait adaption, personal space, shoulder rotation