Disease Prediction and Topic Phrase Extraction from Clinical Reports by Attention-based LSTM model
No Thumbnail Available
Date
2020
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
none
In this thesis, we focus on how to predict a certain disease from a given pathology report without the pathologist's diagnosis paragraph. Moreover, we aim to identify relevant diagnostic features within reports' paragraphs and get the determined clinical phrases that serve as clinical interpretations for the prediction model. We use the attention-based LSTM model for binary prediction of a given disease. Next, the attention weights learned from the model are extracted to generate attention terms. These attention terms are grouped under different MeSH terms defined by the United States National Library of Medicine. Moreover, the topic phrases are generated by using the frequency pattern method as representations of each group. The extracted topic phrases could provide as the determined clinical interpretation for the prediction.
In this thesis, we focus on how to predict a certain disease from a given pathology report without the pathologist's diagnosis paragraph. Moreover, we aim to identify relevant diagnostic features within reports' paragraphs and get the determined clinical phrases that serve as clinical interpretations for the prediction model. We use the attention-based LSTM model for binary prediction of a given disease. Next, the attention weights learned from the model are extracted to generate attention terms. These attention terms are grouped under different MeSH terms defined by the United States National Library of Medicine. Moreover, the topic phrases are generated by using the frequency pattern method as representations of each group. The extracted topic phrases could provide as the determined clinical interpretation for the prediction.
Description
Keywords
disease prediction, self-attention, attention interpretation, disease prediction, self-attention, attention interpretation