以適應性特徵擷取及改進支持向量機檢測心電圖心律不整

dc.contributor高文忠zh_TW
dc.contributorWen-Chung Kaoen_US
dc.contributor.author楊岳穎zh_TW
dc.contributor.authorYueh-Yiing Yangen_US
dc.date.accessioned2019-09-03T10:48:37Z
dc.date.available2020-12-21
dc.date.available2019-09-03T10:48:37Z
dc.date.issued2010
dc.description.abstract心電圖(ECG)分析是檢測心律不整最好的方法之ㄧ,雖然已經有許多相關的演算法已經被提出,但是可靠性低的訊號特徵提取分析或歸納能力較低的辨識器使得系統的辨識率仍然不能達到要求。本論文提出適應性特徵擷取與改良的支持向量機(SVMs)的心電圖心律不整檢測系統。首先利用小波轉換係數及訊號之振幅或週期等參數作為系統的候選人,針對每一個分類器適應性的擷取出少數特定的特徵;而改良式支持向量機結合k-means分群法與一對一支持向量機,並且修改其投票機制,進一步提高了相似類別之間的辨識率。此心電圖心律不整檢測系統使用了超過100,000筆的MIT-BIH心律不整資料庫樣本進行測試,平均辨識率高達97.96%。zh_TW
dc.description.abstractThe electrocardiogram (ECG) analysis is one of the most important approaches to cardiac arrhythmia detection. Many algorithms have been proposed, however, the recognition rate is still unsatisfactory due to unreliable feature extraction in signal characteristic analysis or poor generalization capability of the classifier. In this paper, we propose a system for cardiac arrhythmia detection in ECGs with adaptive feature selection and modified support vector machines (SVMs). Wavelet transform-based coefficients and signal amplitude/interval parameters are first enumerated as candidates, but only a few specific ones are adaptively selected for the classification of each class pair. A new classifier, which integrates k-means clustering, one-against-one SVMs, and a modified majority voting mechanism, is proposed to further improve the recognition rate for extremely similar classes. By testing the system with more than 100,000 samples in MIT-BIH arrhythmia database, the average recognition rate is 97.72%.en_US
dc.description.sponsorship電機工程學系zh_TW
dc.identifierGN0697750349
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0697750349%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/95811
dc.language中文
dc.subject心電圖zh_TW
dc.subject適應性特徵選取zh_TW
dc.subject支持向量機zh_TW
dc.subjectk-means分群法zh_TW
dc.subjectelectrocardiogram (ECG)en_US
dc.subjectadaptive feature extractionen_US
dc.subjectsupport vector machines (SVMs)en_US
dc.subjectk-means clusteringen_US
dc.title以適應性特徵擷取及改進支持向量機檢測心電圖心律不整zh_TW
dc.titleDetection of cardiac arrhythmia in electrocardiograms using adaptive feature extraction and modified support vector machinesen_US

Files

Collections