原子力顯微術應用:鐵蛋白結構變異分析
No Thumbnail Available
Date
2013
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
本論文利用磁性模組原子力顯微術(Magnetic Force Microscopy簡稱MFM)、導電模組原子力顯微術(Conductive Atomic Force Microscopy簡稱C-AFM)以及力曲線(Force Curve)分析法辨識鐵蛋白與缺鐵鐵蛋白的結構差異。結果顯示,在施予偏壓下,鐵蛋白與探針間的引力比缺鐵鐵蛋白高,顯示二者結構可能因鐵核存在而有所差異。對此,我們也以磁鐵微粒與其他蛋白質進行比較。此外,有鑒於蛋白質經氫氧化鈉處理後會逐漸變性,我們也以之對鐵蛋白與缺鐵蛋白進行分析,發現二者均會因氫氧化鈉處理致使其與探針間的引力逐漸下降,二者間差異逐漸趨於一致。
In this thesis, we conducted research on the difference between the structure of ferritin and apoferritin using magnetic force microscopy (MFM), conductive atomic force microscopy (C-AFM) and force curve analysis. Experimental results showed that the attraction force between ferritin and probe is high than that between apoferritin and probe, suggesting that the magnetic iron core embedded in ferritin might play a key role. For this hypothesis, we analyzed magnetic Fe3O4 nanoparticles and other proteins for comparison. In view of the fact that denaturing often occur as proteins are treated with sodium hydroxide, we implemented experiments in this way to differentiate ferritin and apoferritin. According to the decreasing attraction force towards the probe revealed during the treatment with NaOH, both protein molecules denatured gradually, but the difference was fading gradually as well.
In this thesis, we conducted research on the difference between the structure of ferritin and apoferritin using magnetic force microscopy (MFM), conductive atomic force microscopy (C-AFM) and force curve analysis. Experimental results showed that the attraction force between ferritin and probe is high than that between apoferritin and probe, suggesting that the magnetic iron core embedded in ferritin might play a key role. For this hypothesis, we analyzed magnetic Fe3O4 nanoparticles and other proteins for comparison. In view of the fact that denaturing often occur as proteins are treated with sodium hydroxide, we implemented experiments in this way to differentiate ferritin and apoferritin. According to the decreasing attraction force towards the probe revealed during the treatment with NaOH, both protein molecules denatured gradually, but the difference was fading gradually as well.
Description
Keywords
原子力顯微術, 力曲線分析法, 鐵蛋白, Atomic Force Microscopy, Force Curve, Ferritin