非週期排列多層結構光學性質之研究

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

本論文主要在研究一維三段式康托爾(Triadic Cantor)非週期性的多層結構光學性質,我們分別用介電質與超導體材料來探討,以及將三階康托爾結構重複排列,成為康托爾光子晶體。 在第二與三章研究一維介電質三段式康托爾(Triadic Cantor)多層結構,其主要是探討康托爾(Triadic Cantor)這個非週期排列的特性,許多光子晶體都是以週期或規則的重複排列來研究,那非週期的就會有它特別的特性,其最主要的特性就是階數增加後,在結構造成多個高反射區及高透射峰,而重複排列又可以加強原本的特性,然後對任一階數該結構保持其對稱性即自我相似性,其對稱性會依照設計波長λ0,以此為中心左右對稱。 第四章研究超導體的光子晶體會產生光子能隙(PBG)和缺陷膜態,我們調整超導體材料的厚度,來改變PBG的寬度以及截止頻率的轉折,也藉由康托爾(Triadic Cantor)結構發現缺陷膜的產生,並結合超導體的特性,發展出多種特性的系統。
This paper studies a three-dimensional Cantor (Triadic Cantor) aperiodic multilayer structures and optical properties, we are using dielectric and superconductor material to explore, as well as third-order Cantor repeated arrangement structure, become Cantor Seoul photonic crystals. In the second study a three-dimensional dielectric Cantor (Triadic Cantor) a multilayer structure with three chapters, which is mainly to explore Cantor (Triadic Cantor) this non-periodic arrangement of features, many of photonic crystals are periodic or rules repeating arrangement to study, that it will be non-periodic special characteristics, its main feature is the increase after order, resulting in the structure of a plurality of high reflectivity and high transmission peak area, and repetitive arrangement can also enhance the original characteristic, then for any order to maintain symmetry of the structure that is self-similarity symmetry will follow the design wavelength λ0, this symmetrical about the center. Chapter IV study superconductors photonic crystals can produce photonic bandgap (PBG) and defects FILM, we adjust the thickness of the superconductor material to change the width and the cut-off frequency of PBG transition, but also by Cantor (Triadic Cantor) structure defects found film and binding properties of superconductors, the development of the system's various features.

Description

Keywords

三段式康托爾, 光子晶體, Triadic Cantor, optical properties

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By