探討馬來西亞與臺灣高中學生對兩國「物質的分類」文本之閱讀理解
No Thumbnail Available
Date
2021
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
摘要
本研究旨於探討馬來西亞與臺灣高中學生對兩國「物質的分類」文本之閱讀理解。以系統功能語言學(SFL) 作爲理論基礎,選取馬來西亞華文獨立中學(M版)與臺灣龍騰版(T版)高中化學教科書之「物質的分類」單元作爲文本分析範疇,從科學詞彚的語意關係、視覺語法及圖文關係分析架構等面向探討兩國文本的「組織結構」與「表達語意關係的論述」之特性與差異。以文本的語言特性和圖示表徵結構為參考,分別設計成M版與T版閲讀理解測驗,作爲探討兩國高中學生對前揭文本之閱讀理解。本研究以線上表單的方式收取樣本,施測對象分別爲76位馬來西亞學生與68位臺灣學生。研究結果發現如下:
一、兩國文本在組織結構上有實質的差異,M版科學內容較難閱讀理解,T版則以過度零
回指的形式來呈現簡潔的課文內容。
二、在語意關係方面,M版本文較傾向於類別關係的論述,T版不會偏重特定語意關係的
介紹;在圖示部分,兩國文本會採用不同的表徵類別來表達語意關係,部分蘊含不易識讀的語意訊息;在圖文部分,M版本文蘊含較多的語意訊息,而T版則在圖示中蘊含更豐富且不易識讀的語意訊息。
三、在測驗方面,兩國學生在M版測驗的作答表現相當,但在T版測驗的作答表現卻達到顯著差異(t(70)= -3.495, p =.001<.010)。針對「元素」概念定義之理解,兩國學生均持有高度比例的閲讀困難。
本研究藉由兩國學生對於不同國家文本之閱讀理解,提供科學教科書編輯者及科學教師教學上的參考與相互借鏡之處,促進讀者瞭解不同國家教科書在同一科學概念之特性與論述差異和如何精確表達語意關係有更深入之理解。
Abstracts The purpose of this study is to investigate the reading comprehension of high school students, from both Malaysia and Taiwan, on the text of “Classification of Substances”. Malaysian Chinese Independent Secondary School (M version) and Taiwan LongTeng Edition (T version) high school chemistry textbooks were selected. The texts were analyzed based on the theory of Systemic Functional Linguistics (SFL), from the aspects of semantic relations of scientific wording, interpretation of imagetheory, and framework of the image-text relations. This study explores the characteristics and the differences of the texts from the two countries via analyzing the “organizational structure” and “the expression of semantic relations” in scientific contents. M version and T version reading comprehension tests were designed based on the language features and diagram representation of two texts respectively. In this study, data were collected through online questionnaires, and the subjects of investigation were 76 Malaysian students and 68 Taiwanese students. Below are the findings of this study.1.There were substantial differences in the organizational structure of the texts from two countries. The scientific content from the M version was harder to read and understand, while the T version excessively presented concise text content in the form of zero anaphora.2.In terms of semantic relations, the text from M version was more inclined to discuss the classification relations, and the T version did not emphasize any specific semantic relations. In the diagram parts, the two texts used different representation categories to express the semantic relationships, and some contained semantic information that were difficult to read. In the image-text parts, the main text from M version contained more semantic information, while the diagram of the T version contained more semantic information that were difficult to read.3.In terms of tests, students from both countries performed equally for the M version test, but significant difference (t(70)= -3.495, p =.001<.010) was found for the T version test. Students from both countries were found having a high level of reading difficulty in understanding the “element” concept. From the reading comprehension results of the students, this study provide a reference for science textbooks editors and science teachers in teaching, and in promoting readers to understand the characteristics and differences of a scientific concept present in textbooks across different countries and have a deeper understanding on howto accurately express semantic relations in science context.
Abstracts The purpose of this study is to investigate the reading comprehension of high school students, from both Malaysia and Taiwan, on the text of “Classification of Substances”. Malaysian Chinese Independent Secondary School (M version) and Taiwan LongTeng Edition (T version) high school chemistry textbooks were selected. The texts were analyzed based on the theory of Systemic Functional Linguistics (SFL), from the aspects of semantic relations of scientific wording, interpretation of imagetheory, and framework of the image-text relations. This study explores the characteristics and the differences of the texts from the two countries via analyzing the “organizational structure” and “the expression of semantic relations” in scientific contents. M version and T version reading comprehension tests were designed based on the language features and diagram representation of two texts respectively. In this study, data were collected through online questionnaires, and the subjects of investigation were 76 Malaysian students and 68 Taiwanese students. Below are the findings of this study.1.There were substantial differences in the organizational structure of the texts from two countries. The scientific content from the M version was harder to read and understand, while the T version excessively presented concise text content in the form of zero anaphora.2.In terms of semantic relations, the text from M version was more inclined to discuss the classification relations, and the T version did not emphasize any specific semantic relations. In the diagram parts, the two texts used different representation categories to express the semantic relationships, and some contained semantic information that were difficult to read. In the image-text parts, the main text from M version contained more semantic information, while the diagram of the T version contained more semantic information that were difficult to read.3.In terms of tests, students from both countries performed equally for the M version test, but significant difference (t(70)= -3.495, p =.001<.010) was found for the T version test. Students from both countries were found having a high level of reading difficulty in understanding the “element” concept. From the reading comprehension results of the students, this study provide a reference for science textbooks editors and science teachers in teaching, and in promoting readers to understand the characteristics and differences of a scientific concept present in textbooks across different countries and have a deeper understanding on howto accurately express semantic relations in science context.
Description
Keywords
文本分析, 物質的分類, 科學文本, 語意關係, 閲讀理解, text analysis, classification of substances, scientific text, semantic relations, reading comprehension