基於超像素分割之衛星雲圖進行預測與估計日射量之系統

dc.contributor呂藝光zh_TW
dc.contributorLeu, Yih-Guangen_US
dc.contributor.author郭家宏zh_TW
dc.contributor.authorGuo, Jia-Hongen_US
dc.date.accessioned2023-12-08T07:47:13Z
dc.date.available2022-08-25
dc.date.available2023-12-08T07:47:13Z
dc.date.issued2022
dc.description.abstract由於日射量容易受天氣因素影響而容易產生變化,進而造成太陽能發電量不穩定,因此,難以將其整合入區域電網當中。本文建立一個以超像素分割衛星雲圖為基礎之日射量估計與預測系統。分析衛星雲圖並萃取其雲層特徵,採用光流法,分析雲層運動,生成預測的衛星雲圖。再將這些影像特徵與一些天氣預報特徵作為長短期記憶(LSTM)之輸入,進行日射量的估計與預測。本文使用幾個效能指標來評估估計與預測的效果,包括平均絕對誤差(MAE)、均方根誤差(RMSE)以及判定係數(R^2);並設計數個實驗方法進行比較,實驗結果顯示,本文所提出方法有達到預期的成果。zh_TW
dc.description.abstractSince solar radiation is susceptible to changes due to weather factors, it is difficult to integrate it into the regional power grid because of the instability of solar power generation. In this study, a solar irradiance estimation system based on satellite cloud image superpixel segmentation was established. The satellite cloud image is analyzed, the cloud features are extracted, the satellite cloud image is used as the input, the cloud layer movement is analyzed by the optical flow method, and the predicted satellite cloud image is generated. These features are used as input to long short-term memory (LSTM) to estimate and predict solar irradiance. Several performance metrics are used to evaluate the estimation and prediction, including MAE, RMSE, and R2. Several methods are compared, and the experimental results show that the proposed method performs better.en_US
dc.description.sponsorship電機工程學系zh_TW
dc.identifier60975025H-42025
dc.identifier.urihttps://etds.lib.ntnu.edu.tw/thesis/detail/eb4043c9d32532aeea26cfde5cb0a132/
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/120311
dc.language中文
dc.subject日射量zh_TW
dc.subject衛星雲圖zh_TW
dc.subject超像素分割zh_TW
dc.subject光流法zh_TW
dc.subject長短期記憶zh_TW
dc.subjectsolar irradianceen_US
dc.subjectsatellite cloud imageen_US
dc.subjectsuper pixel segmentationen_US
dc.subjectoptical flowen_US
dc.subjectLSTMen_US
dc.title基於超像素分割之衛星雲圖進行預測與估計日射量之系統zh_TW
dc.titleA system for predicting and estimating solar irradiance based on satellite cloud image with superpixel segmentationen_US
dc.typeetd

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
202200042025-104348.pdf
Size:
14.02 MB
Format:
Adobe Portable Document Format
Description:
etd

Collections