具影像特徵之LSTM深度遞迴類神經網路之日射量預測

dc.contributor呂藝光zh_TW
dc.contributorLeu, Yih-Guangen_US
dc.contributor.author周建華zh_TW
dc.contributor.authorJhou, Jian-Huaen_US
dc.date.accessioned2020-10-19T06:46:10Z
dc.date.available2024-08-27
dc.date.available2020-10-19T06:46:10Z
dc.date.issued2019
dc.description.abstract由於日照強度會因為雲層厚度、空氣霾害等問題而受到影響,進而造成太陽光電發電量的不穩定,所以能夠準確的預測日射量是件重要的事情。在本論文中使用具長短期記憶(LSTM)的遞迴類神經網路(RNN)進行日射量的預測。首先建置一日射量紀錄系統,及天空影像採集系統,這兩種系統將記錄每天的日射量及天空影像變化,並儲存於MySQL資料庫。在天空影像方面,利用影像處理方法萃取出天空影像的特徵值,之後將影像特徵值與日射量做為LSTM遞迴類神經網路(LSTM-RNN) 輸入 ,以進行預測。最後,本文以領前五分鐘至六十分鐘進行日射量預測,並進行許多方法比較,以驗證本文所提方法的預測效能。zh_TW
dc.description.abstractSince solar irradiance is affected by factors, such as the thickness of the clouds and the air pollution. These factors can cause instability in solar power generation. Therefore, it is important to be able to accurately predict the amount of solar irradiance. In this paper, recurrent neural networks (RNNs) with long short-term memory (LSTM) are used to develop a solar irradiance forecasting. First, a solar irradiance recording system and a sky image capture system were built. The two systems record daily solar irradiance and sky images, and then store them in the MySQL database. For sky images, some processing methods are used to obtain the feature values. The feature values and the solar irradiance amount are inputs of the LSTM recurrent neural networks (LSTM-RNN). Finally, the solar irradiance forecasting with lead times of 5 to 60 minutes is presented, and then some comparison results are conducted in order to verify the performance of the proposed method in this paper.en_US
dc.description.sponsorship電機工程學系zh_TW
dc.identifierG060675008H
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G060675008H%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/110750
dc.language中文
dc.subject太陽能預測zh_TW
dc.subject深度學習zh_TW
dc.subject遞迴類神經網路zh_TW
dc.subject影像特徵zh_TW
dc.subjectSolar Irradiance Forecastingen_US
dc.subjectDeep Learningen_US
dc.subjectRecurrent Neural Networken_US
dc.subjectImage Featureen_US
dc.title具影像特徵之LSTM深度遞迴類神經網路之日射量預測zh_TW
dc.titleSolar Irradiance Forecasting Using LSTM Deep Recurrent Neural Networks with Image Featureen_US

Files

Collections