鐵電氧化鉿鋯之記憶體及鰭式電晶體
No Thumbnail Available
Date
2019
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
在半導體的領域中,電晶體在設計上追求精小,然而對效能的期望卻越來越高。因此,此領域的專家不斷地找尋新穎材料,嘗試加入在電晶體的製作中,希望能藉此突破現今所面臨的瓶頸。鐵電材料在近年來相當受到研究人員的注目,其材料擁有的雙穩態能被廣泛應用於記憶體的操作上。此外,鐵電材料中出現的負電容效應,有著電壓放大的效果,能有效打破次臨界擺幅(subthreshold swing, SS)的物理極限,以降低操作電壓VDD。
本篇論文研究將使用鐵電材料-氧化鉿鋯(HfZrO2, HZO)作為絕緣層,在MFM(Metal-Ferroelectric-Metal)結構中替換不同的上電極金屬,探討遲滯曲線特性的改變。而在記憶體追求簡單的電路設計概念下,利用HZO鐵電電晶體來做出1T記憶體。最後在鰭式電晶體的製程技術下,搭載鐵電薄膜來突破次臨界擺幅的極限,同時達到尺寸微縮及效能提升的結果。
In the semiconductor field, transistors are required to be extremely small; however, the functions are expected to be better and better. Therefore, experts in this field are always looking to find novel materials to apply in transistors to surmount the bottleneck. Ferroelectric materials get the researcher’s attention in recent years, because these materials have steady bipolar state in hysteresis loop, they can be used in memory function wildly. In addition, ferroelectric materials occur negative capacitance which has voltage amplification to challenge the subthreshold swing (SS) with physical limit, and is helpful to decrease the operation voltage VDD. In this research, it is going to be about the use of ferroelectric materials, HfZrO2 (HZO), to be the insulator layer. The characteristic of hysteresis loop is discussed by changing different top electrode metal in MFM (Metal-Ferroelectric-Metal) structure. And memory circuit is under the concept of simple design, using HZO ferroelectric transistor to make 1T memory. The last, transistors carry up ferroelectric film to break through the physical limit of subthreshold swing with FinFET fabrication skill to achieve miniature size and increase performance.
In the semiconductor field, transistors are required to be extremely small; however, the functions are expected to be better and better. Therefore, experts in this field are always looking to find novel materials to apply in transistors to surmount the bottleneck. Ferroelectric materials get the researcher’s attention in recent years, because these materials have steady bipolar state in hysteresis loop, they can be used in memory function wildly. In addition, ferroelectric materials occur negative capacitance which has voltage amplification to challenge the subthreshold swing (SS) with physical limit, and is helpful to decrease the operation voltage VDD. In this research, it is going to be about the use of ferroelectric materials, HfZrO2 (HZO), to be the insulator layer. The characteristic of hysteresis loop is discussed by changing different top electrode metal in MFM (Metal-Ferroelectric-Metal) structure. And memory circuit is under the concept of simple design, using HZO ferroelectric transistor to make 1T memory. The last, transistors carry up ferroelectric film to break through the physical limit of subthreshold swing with FinFET fabrication skill to achieve miniature size and increase performance.
Description
Keywords
鐵電記憶體, 氧化鉿鋯, 負電容電晶體, 鰭式電晶體, Fe-Memory, HfZrOx, NC-FETs, FinFET