50 results
Search Results
Now showing 1 - 10 of 50
Item Design of a K-band Low Insertion Loss Variation Phase Shifter Using 0.18- μm CMOS Process(2010-12-10) Chung-Han Wu; Wei-Tsung Li; Jeng-Han Tsai; Tian-Wei HuangThis paper demonstrates a k-band low insertion loss variation phase shifter with over 330° continuously phase tuning range from 21-25GHz in standard 0.18-μm CMOS technology. This phase shifter is composed of a 180° continuously phase tuning range reflection type phase shifter (RTPS) and a 180° discrete switch type phase shifter (STPS). The measured phase shift range is 336° with low loss variation of 1.3dB at 22GHz and the maximum insertion loss is 16 dB at 22GHz. To the best of authors' knowledge, the MMIC is the lowest insertion loss variation phase shifter in CMOS technology at 22GHz.Item Design and Analysis of A 55 to 71-GHz Compact and Broadband Distributed Active Transformer Power Amplifier in 90-nm CMOS Process(IEEE Microwave Theory and Techniques Society, 2009-07-01) Yung-Nien Jen; Jeng-Han Tsai; Tian-Wei Huang; Huei WangA 55-71-GHz fully integrated power amplifier (PA) using a distributed active transformer (DAT) is implemented in 90-nm RF/MS CMOS technology. The DAT combiner, featuring efficient power combination and direct impedance transformation, is suitable for millimeter-wave (MMW) PA design. Systematic design procedures including an impedance allocation plan, a compensation line, and a gain boosting technique are presented for the MMW DAT PA. The monolithic microwave integrated circuit (MMIC) performs a high and flat small-signal gain of 26 plusmn1.5 dB from 55 to 71 GHz, which covers a full band for 60-GHz wireless personal area network applications. Using cascode devices and a DAT four-way power combination, the CMOS PA delivers 14.5- and 18-dBm saturated output power with 10.2% and 12.2% power-added efficiency under 1.8- and 3-V supply voltage, respectively, at 60 GHz. The maximum linear output power (P1 dB) is 14.5 dBm. To the best of our knowledge, the MMIC is the first demonstration of a V-band CMOS PA using a DAT combining scheme with highest linear output power among the reported 60-GHz CMOS PAs to date.Item A 38-46-GHz MMIC Doherty power amplifier using post-distortion linearization(IEEE Microwave Theory and Techniques Society, 2007-05-01) Jeng-Han Tsai; Tian-Wei HuangThis letter describes the first demonstration of a fully integrated Doherty power amplifier (PA) monolithic microwave integrated circuit (MMIC) with post-distortion linearization at millimeter-wave (MMW) frequency band. The Doherty amplifier MMIC, using a 0.15-mum GaAs HEMT process, achieves a small signal gain of 7dB from 38 to 46GHz with a compact chip size of 2mm2. The saturation output power of the Doherty amplifier is 21.8dBm. The similar topology between the Doherty amplifier and post-distortion linearization makes it possible to improve efficiency and linearity simultaneously in MMW PA designs. After gate bias optimization of the main and peaking amplifier, the drain efficiency improved 6% at 6-dB output back-off and the inter-modulation distortion (IMD) of quasi Doherty amplifier can be improved 18dB at 42GHz compared with the balanced amplifier operationItem 40-48 GHz sub-harmonic transceiver for high data-rate communication system applications(2008-04-24) Jeng-Han Tsai; To-Po Wang; Kun-You Lin; Tian-Wei Huang; Yi-Cheng Lin; Hsin-Chia Lu; Huei WangA 40-48 GHz sub-harmonic transceiver module for millimeter-wave (MMW) high data-rate communication systems has been developed in this paper. The highlights are a sub-harmonic transmitter with 12 plusmn 3 dB conversion gain, a power amplifier with 17 plusmn 2 dBm output power, a low noise amplifier with 5 plusmn 1.5 dB noise figure, and a sub-harmonic mixer with 15 plusmn 3 dB conversion loss from 40 to 48 GHz. Furthermore, two kinds of MMW high data-rate communication applications using the 40-48 GHz sub-harmonic transceiver module were demonstrated. The experimental results show that the 40-48 GHz transceiver has Gigabit transmission capability.Item Design of 40-108 GHz low-power and high-speed CMOS up/down-conversion ring mixers for multi-standard MMW radio applications(IEEE Microwave Theory and Techniques Society, 2012-03-01) Jeng-Han TsaiIn this paper, a pair of broadband, low-LO-power, low-dc-power, and high-speed up/down-conversion ring mixers are presented for multistandard millimeter-wave (MMW) radio applications. By employing a weak inversion biasing technique, the ring mixer can operate at a low LO drive level and low dc power while maintaining reasonable conversion gain performance. In addition, an IF transimpedance amplifier (TIA) buffer and wideband RF design are introduced to increase the operation speed of the mixer for MMW wireless Gigabit transmission. Using a 90-nm CMOS low-power process, the up-/down-conversion ring mixers are designed and fabricated based on the presented topology. The down-conversion ring mixer and up-conversion ring mixer exhibit flat measured conversion gain of -1 � 2 dB and 0 � 2 dB and dB from 40 to 110 GHz and 40 to 108 GHz, respectively. After biasing the transistors of the ring mixer core at weak inversion region, the presented down-conversion and up-conversion ring mixers can operate at low LO drive power, -2 and 0 dBm, respectively, even up to 100 GHz. For MMW wireless gigabit communication, gigabit binary phase-shift keying modulation signal test is successfully performed through a direct-conversion system in this work. The presented ring mixers are suitable for 60-GHz wireless personal area network, -E-band (71-76 GHz, 81-86 GHz, and 92-95 GHz) wireless fiber, and 77-GHz anti-collision radar applications.Item A 51 to 65 GHz low-power bulk-pumped mixer using 0.13-m CMOS Technology(IEEE Microwave Theory and Techniques Society, 2009-08-01) Che-Yu Wang; Jeng-Han TsaiA low-voltage and low-power down-conversion bulk-driven mixer using standard 0.13 mum CMOS technology is presented in this letter. To work on a low supply voltage and low power consumption applications while maintaining reasonable performance, the bulk-driven technique is selected in this V-band mixer design. The mixer has a conversion gain of 0 plusmn1.5 dB from 51 to 65 GHz with low supply voltage of 1 V and low power consumption of 3 mW. To our knowledge, the MMIC is the highest frequency CMOS bulk-driven mixer to date with good conversion gain and low power consumption among the recently published active mixers around 60 GHz.Item A 55-64 GHz fully-integrated sub-harmonic wideband transceiver in 130nm CMOS process(Institute of Electrical and Electronics Engineers (IEEE), 2009-11-01) Jeng-Han TsaiIn this letter, a 55–64 GHz compact fully-integrated gigabit transceiver with sub-harmonic pump technique is presented. The transceiver consists of a single-pole-double-throw (SPDT) traveling wave switch, a low-noise amplifier (LNA), a buffer amplifier (BA), and two sub-harmonic resistive mixers for up-conversion and down-conversion, respectively. The transceiver using 130 nm standard CMOS technology achieves an up-conversion gain of 7.4 dB at 62 GHz and down-conversion gain of 7.2 dB at 60 GHz with a compact chip size of 1.2 . The 3 dB frequency bandwidth ranges from 55 to 64 GHz, which can cover the whole frequency band for 802.15.TG3C WPAN applications. For system applications, gigabit BPSK modulation signal test is successfully performed in this work.Item A high-efficiency, broadband and high output power PHEMT balanced K-band doubler with integrated balun(2006-12-15) Wen-Ren Lee,Shih-Fong Chao; Zuo-Min Tsai,Pin-Cheng Huang; Chun-Hsien Lien; Jeng-Han Tsai; Huei WangA high-efficiency and high output power K-band frequency doubler using InGaAs PHEMT power device is developed, which features high fundamental frequency rejection, high efficiency, good conversion gain over wide bandwidth, and high output power. A compact lumped rat-race hybrid and an output buffer amplifier are implemented on chip for a balanced design and high output power. The circuit exhibits measured conversions gain about 8 dB over the output frequencies from 12 to 22 GHz. The fundamental frequency suppression is better than 20 dB and the second harmonic saturation output power is higher than 12 dBm with a miniature chip size of 2 mm x 1 mm.Item A 25-75-GHz broadband Gilbert-cell mixer using 90-nm CMOS technology(IEEE Microwave Theory and Techniques Society, 2007-04-01) Jeng-Han Tsai; Pei-Si Wu; Chin-Shen Lin; Tian-Wei Huang; John G.J. Chern; Wen-Chu Huang; Huei WangA compact and broadband 25-75-GHz fully integrated double-balance Gilbert-cell mixer using 90-nm standard mixed-signal/radio frequency (RF) CMOS technology is presented in this letter. A broadband matching network, LC ladder, for Gilbert-cell mixer transconductance stage design is introduced to achieve the flatness of conversion gain and good RF port impedance match over broad bandwidth. This Gilbert-cell mixer exhibits 3plusmn2dB measured conversion gain (to 50-Omega load) from 25 to 75GHz with a compact chip size of 0.30mm2. The OP1 dB of the mixer is 1dBm and -4dBm at 40 and 60GHz, respectively. To the best of our knowledge, this monolithic microwave integrated circuit is the highest frequency CMOS Gilbert-cell mixer to dateItem A V-band VCO using fT-doubling technique in 0.18-μm CMOS(2011-12-08) Yen-Hung Kuo; Jeng-Han Tsai; Tian-Wei Huang; Huei WangA low supply voltage V-band voltage-controlled oscillator (VCO) using fT-doubling technique is presented in this paper. The proposed VCO is fabricated in 0.18-μm CMOS technology. The proposed VCO adopts the fT-doubling technique to eliminate the gate-to-source capacitance of cross-coupled pair of VCO. The oscillation frequency of VCO can be increased due to the parasitic capacitance is eliminated. The measured results show that the proposed VCO have tuning range of 0.74 GHz from 58.09-to-58.83 GHz. The proposed VCO consumes 4 mW dc power from 1.2 V supply voltage.