Search Results

Now showing 1 - 5 of 5
  • Item
    富含高度糖化終產物之飲食對小鼠良性攝護腺增生之影響
    (2023) 林姿言; Lin, Tzu-Yen
    良性攝護腺增生 (benign prostatic hyperplasia, BPH)又稱為攝護腺肥大,為伴隨男性老化常見之下泌尿道疾病。不健康的飲食型態所衍生的代謝症候群 (metabolic syndrome)亦可能是BPH的致病因子。食物於高溫烹調或加工過程中容易因梅納反應 (Maillard reaction)衍生出一系列複雜的高度糖化終產物 (advanced glycation end product, AGE)。AGE具有不易被生理代謝,容易累積於體內的特性;AGE與receptor for AGE (RAGE)結合後可活化NF-κB引發生物體氧化壓力與發炎反應。本研究之目的在於探討攝取高AGE飲食,是否與促進BPH有關。實驗使用雄性ICR小鼠48隻,隨機分成6組:(1) 控制組 (control, standard diet);(2) 高AGE組 (H-AGE diet);(3) H-AGE + BPH治療藥物組 (finasteride, 5 reductase inhibitor);(4) H-AGE + 抗發炎藥物組 (celecoxib, COX-2 inhibitor);(5) H-AGE + AGE抑制劑組 (ALT-711, AGE inhibitor);(6) H-AGE + 抗氧化劑組 (vitamin E)。實驗期間,每週定期紀錄小鼠體重、攝食和飲水量變化,並以核磁造影技術 (magnet resonance imaging, MRI)追蹤小鼠之攝護腺體積變化。攝護腺組織病理結構以hematoxylin-eosin staining 評估;細胞增生、氧化壓力、發炎反應與AGE-RAGE-NF-κB等指標分子之蛋白質表現利用immunohistochemistry staining分析。收集血清分析睪固酮 (testosterone)、二氫睪固酮 (dihydrotestosterone, DHT)、螢光AGE及malondialdehyde (MDA)濃度。結果顯示,H-AGE組之攝護腺指數顯著高於控制組1.2–1.5倍 (p< 0.05),組織型態上可見攝護腺上皮層厚度與Ki67表現增加的現象。長期攝取H-AGE diet小鼠,可造成CML、CEL、MG-H1等AGE累積於攝護腺組織中,並伴隨RAGE與NF-κB之蛋白質表現增加。此外,H-AGE組攝護腺組織之IL-1𝞫、TNF-𝞪、cyclooxygenase-2、8-hydroxy-2-deoxyguanosine蛋白質表現皆顯著高於控制組 (p < 0.05),而介入ALT-711後,可顯著改善H-AGE所造成之BPH與氧化壓力及發炎反應。綜合上述,AGE可能為造成BPH的飲食因子,且其作用機轉可能與長期攝取AGE促進攝護腺組織之氧化壓力及發炎反應有關。
  • Item
    新鮮小根蒜萃取物對於高果糖玉米糖漿誘導代謝紊亂及骨骼肌損傷之保護效應
    (2023) 許勝崴; Hsu, Sheng-Wei
    目的:高果糖玉米糖漿(HFCS;以55 %果糖和45 %葡萄糖組成)是近年來於飲品及加工食品中主要使用的添加糖。長期的高糖飲食不僅會引起代謝症候群,還會進一步導致骨骼肌異常。小根蒜(Allium macrostemon Bunge)是主要種植於台灣花蓮的藥食兩用傳統作物,通常經烹煮乾燥後作為中藥材使用,然而其新鮮鱗莖的生物活性功能尚待釐清。本研究旨在探討新鮮小根蒜萃取物對於高果糖玉米糖漿誘導的代謝失調和骨骼肌損傷的保護作用。材料和方法:製備新鮮小根蒜鱗莖的50 %乙醇萃取物(AMHE)。 將12週齡C57BL/6雄鼠隨機分為5組(CTL、HFCS、HFCS+AMHE250、HFCS+AMHE500、HEE500),供其自由攝食一般飼料和飲用二次水或30% HFCS溶液,AMHE(劑量250 和 500 mg/kg)則每日以管餵方式補充,實驗為期14週。於實驗中測試了胰島素敏感性、空腹血糖值、血壓、血清三酸甘油酯、血清總膽固醇濃度和運動表現能力。另外,將腓腸肌進行組織橫切面面積、氧化壓力、粒線體活性和數量的分析。 在體外試驗模式,C2C12 肌母細胞經分化4 天成肌管細胞,隨後肌管細胞以不同HFCS濃度(20、40或80 mM)處理4 天並於最末2天合併處理80 nM胰島素。試驗AMHE(125、250或500 μg/ml)在HFCS誘導肌細胞損傷的保護效果。 並於腓腸肌組織及肌管細胞中進行分子機制的探討。結果:HFCS使小鼠增加體重、胰島素阻抗、高血壓及血脂異常,並降低運動表現。AMHE的補充對於HFCS造成的傷害具有保護效益,而AMHE500又優於AMHE250。在腓腸肌中,發現HFCS 導致肌肉萎縮、氧化壓力堆積和粒線體功能失調。二氫乙啶(DHE)染色和琥珀酸脫氫酶(SDH)染色分析結果表明,AMHE500具有顯著的抗氧化能力,並透過增加粒線體酵素活性來增強粒線體功能。蛋白質表現量的改變也顯示出相同的結果,AMHE500降低肌肉萎縮(MuRF1、MAFbx)和促氧化(NOX2/4)蛋白質的表達,並提高抗氧化(SIRT3、FOXO3A、SOD2、Catalase)、粒線體功能(PGC-1α、COX IV)相關蛋白質的表現。 最後建立以HFCS合併胰島素誘導的C2C12肌管細胞代謝紊亂及損傷模式,結果顯示AMHE(125、250 或 500 μg/ml)在暴露於胰島素的 C2C12 肌管細胞中呈現劑量效應回復 HFCS 引起的肌細胞損傷。結論:綜上所述,AMHE 可能透過 CREB/PGC1-α/SIRT3 訊息路徑增強抗氧化能力和粒線體功能,從而有效減輕過量 HFCS 攝取導致代謝失調相關的骨骼肌損傷和運動表現下降。這些結果對於未來AMHE 針對 HFCS 所引起的損傷治療功能奠定了基礎。
  • Item
    藍光暴露時間和強度對小鼠視網膜之光毒性效應
    (2022) 簡品婷; Chien, Pin-Ting
    根據DIGITAL 2022–Global Overview報告顯示,全球每人每日有將近7小時使用智慧型手機、平板以及電腦等電子設備連接網路的時間,此意昧著扣除睡眠,人眼有超過40%的清醒時間暴露於藍光 (blue light, BL)的環境中。BL因波長短能量高能穿透眼球直達視網膜,藉由刺激活性氧物質 (reactive oxygen species, ROS)生成,造成視網膜組織之光化學毒性 (photochemical toxicity)與相關眼病變。本研究之目的在於探討BL之照射強度與暴露時間對生物體之視網膜損傷效應,實驗選用9週齡雄性ICR小鼠,分別探討短期高強度BL (short-term high-intensity BL)與長期低強度BL (long-term low-intensity BL)照射模式對於視網膜之影響。以hematoxylin and eosin (H&E) staining分析視網膜組織型態之病理變化;以免疫組織化學染色 (immunohistochemistry, IHC)分析視紫質 (rhodopsin)、8-羥基去氧鳥苷 (8-OHdG)、介白素1β (interleukin-1β, IL-1β)、cleaved caspase-3及膠質纖維酸性蛋白 (glial fibrillary acidic protein, GFAP)表現;以視網膜電位圖 (electroretinogram, ERG)評估感光細胞功能。結果顯示,實驗小鼠每日經BL LED (465 ± 10 nm, 5000 lux)照射6小時連續5日,其視網膜外核層 (outer nuclear layer, ONL)、感光細胞內外節 (inner segment/ outer segment, IS/OS)及內核層 (inner nuclear layer, INL)之組織型態與未照射BL組比較無顯著差異 (p < 0.05);眼底鏡 (fundus photography)與眼底螢光血管攝影 (fluorescein angiography)亦無出現血管滲漏、血管增生與黃斑部病變之現象。我們另模擬日常環境BL照度,將實驗小鼠暴露於108 lux (44.8 µW/cm2)之BL LED,進行為期4–28週,每日6小時之長期低強度模式照射。實驗小鼠經低照度BL照射4週可導致ONL細胞核數減少30%;照射至第8週造成ONL平均厚度變薄,且伴隨rhodopsin表現下降30%與8-OHdG表現增加4.7倍,此顯示暴露於低照度BL環境中4–8週,視網膜感光細胞可因BL誘發之氧化壓力開始產生損傷效應。連續照射12週之小鼠其IS/OS層厚度開始減少,同時可見氧化壓力指標8-OHdG相較於之前時間點,其表現大幅提升約2.5倍;同時cleaved caspase-3與GFAP表現上升,顯示感光與神經細胞凋亡以及Müller細胞活化的現象。上述各項分析指標均隨BL暴露時間呈漸進式上升的現象,在藍光連續照射20及28週時達到最顯著之損傷效應。然而促發炎細胞激素IL-1β之表現與未照射BL組比較,於各個時間點並無顯著差異 (p> 0.05)。綜合上述,相較於短期高強度之BL照射,持續性的暴露於低強度BL更可能是導致視網膜損傷的危險因子。本研究模擬生活環境之低照度BL照射條件,嘗試建立更接近生活環境之藍光動物試驗平台,期望能作為日後開發抗藍光護眼保健食品之參考。
  • Item
    長期高果糖高脂飲食促進小鼠視網膜對藍光損傷之敏感性
    (2023) 高孟暐; Kao, Meng-Wei
    藍光 (blue light, BL)因波長短能量高,易引發眼球之活性氧物質 (reactive oxygen substrate, ROS)生成,造成視網膜組織光化學性損傷 (photochemical damage)。我們過去的研究證實,若小鼠暴露趨近日常環境的藍光強度八週後,會造成感光細胞核數與outer nuclear layer (ONL)厚度下降等損傷。有鑑於飲食因子亦可能不利於眼球健康,且飲食型態對於光化學性損傷之交互作用目前仍較少文獻可循,因此本研究擬探討高果糖高脂 (high-fructose and high-fat, HFHF)飲食對於BL誘發視網膜損傷之影響。雄性ICR小鼠,將其隨機分成三組:(1) 控制組 (Control group, Ctrl);(2) 藍光照射組 (BL group),與 (3) 藍光照射合併高果糖高脂飲食組 (BL + HFHF group)。試驗動物於給予HFHF diet四十週後另接受為期八週每日六小時之低強度藍光 (37.7 lux, 0.8 μW)照射。結果顯示HFHF diet可造成小鼠胰島素阻抗及血清total triglyceride (TG)、total cholesterol (TC)、malonaldehyde (MDA)及螢光性advanced glycated end products (AGEs)上升的現象。Hematoxylin& eosin (H&E) staining分析證實,長期攝取HFHF diet會加劇BL對於視網膜組織之病理型態改變,其感光細胞核數與outer nuclear layer (ONL)及inner segment/outer segment (IS/OS)厚度皆顯著低於BL組 (p < 0.05)。Immunofluorescence staining (IF)顯示,與控制組比較,BL照射可顯著造成視網膜組織rhodopsin表現下降與glial fibrillary acidic protein (GFAP)、8-hydroxy-2-deoxyguanosine (8-OHdG)表現上升並同時增加nuclear factor erythroid 2-related factor 2 (Nrf2)與super oxide dismutase1 (SOD1)抗氧化相關蛋白及凋亡指標terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) (p < 0.05),而HFHF diet可顯著加劇上述BL之負面作用並顯著提升抗氧化蛋白Nrf2、SOD1與catalase之表現量,並促進發炎激素interleukin-1β (IL-1β)及tumor necrosis factor-α (TNF-α)於視網膜內表現量,並造成血視網膜屏障滲漏 (blood retinal barrier leakage) (p < 0.05)。同時,給予HFHF diet之動物視網膜內有高度糖化終產物 (advanced glycated end products, AGE)指標物如Nε-(1-carboxyethyl)lysine (CEL)與Nδ-(5-Methyl-4-imidazolon-2-yl)-L-ornithine (MG-H1)累積,其活化receptor for AGE (RAGE)並促進發炎小體 (inflammasome)之形成,以及視網膜細胞凋亡蛋白caspase-3及晚期凋亡指標TUNEL表現量增加 (p < 0.05)。綜合上述,本研究證實,HFHF diet可加劇藍光造成之視網膜損傷,不健康的飲食型態可能為不利於眼球健康的負面因子,有待進一步的臨床研究探討。
  • Item
    長期給予甲基乙二醛誘導 C57BL/6 小鼠視網膜損傷
    (2023) 胡睿安; HWU, JUI-AN
    甲基乙二醛 (methylglyoxal, MGO)屬活性雙羰基化合物 (reactive dicarbonyl species, RCS),為高度糖化終產物 (advanced glycation end products, AGEs)之前驅物,在體外可從日常飲食中獲得;在體內可經由糖解作用產生或透過視覺循環之副產物經代謝後生成。糖尿病患者長期處於高血糖狀態,其血液之MGO濃度顯著高於健康常人。已知MGO會促進AGEs生成,並活化AGE-RAGE signaling pathway,造成生物體氧化壓力與發炎反應,因此被認為可能是造成糖尿病視網膜病變的致病因子之一。據於此,本研究目的在於探討小鼠長期暴露於含MGO的飲食環境中,對於其視網膜是否會造成損傷效應。實驗選用七週齡C57BL/6雄性小鼠 (n = 24),隨機分成健康控制組 (control group)、MGO組 (飲水中含1% MGO),以及MGO + ALT-711組 (1 mg/kg body weight),進行為期四十週的實驗。以hematoxylin and eosin (H&E) staining評估視網膜之組織病理變化;以免疫螢光染色 (immunofluorescence staining, IF)分析視網膜感光細胞、神經細胞活化、氧化壓力、發炎反應與AGE/RAGE等相關指標物的表現。結果顯示,長期給予MGO會降低小鼠視網膜組織外核層 (outer nuclear layer, ONL)、感光細胞內外段 (inner segment/outer segment, IS/OS)與內核層 (inner nuclear layer, INL)之厚度,並降低感光細胞之細胞核數,同時伴隨著視紫質 (rhodopsin)表現降低與膠質纖維酸性蛋白 (glial fibrillary acidic protein, GFAP)表現上升的現象。氧化壓力指標8-hydroxy-2-deoxyguanosine (8-OHdG)、促發炎細胞激素介白素1β (interleukin-1β, IL-1β )與腫瘤壞死因子 (tumor necrosis factor-α, TNF-α)於視網膜組織之表現,與控制組比較亦可見顯著上升的現象 (p < 0.05);同時MGO主要代謝酵素乙二醛酶1 (glyoxalase-1, Glo-1)相較於控制組具有顯著降低的現象 (p< 0.05)。相反地,介入AGE抑制劑ALT-711後可減輕上述之負面效應。值得注意的是,MGO組之小鼠可見其視網膜組織有明顯Nδ -(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine (MG-H1)累積與RAGE活化的現象。綜合上述, MGO可能經由促進AGEs生成與RAGE表現,造成視網膜組織之氧化壓力及發炎反應,進而導致感光細胞損傷與Müller神經細胞活化。本研究結果指出MGO對於視網膜健康之可能負面效應,並提出MGO在糖尿病視網膜病變過程中的可能損傷機制,建議日常膳食中應避免攝取含高MGO之食物。