475 results
Search Results
Now showing 1 - 10 of 475
Item 鐵電電晶體之類比式操作與後段製程相容之設計(2022) 羅肇豐; LOU, Zhao-Feng為達到人工智能(AI)之物聯網(IoT)及高速傳輸之5G/6G科技,高密度的記憶體內/近運算高度需求。近年來各方領域的近記憶體運算與記憶體內建邏輯紛紛被提出,利用各種新興非揮發性記憶體(Emerging non-volatile memory, e-NVM) ,以實現內部存取並執行邏輯操作減少耗時與耗能的問題。本論文便是討論鐵電電晶體之類比式操作與後段製程相容之設計。研究中採用直流 (DC) 掃描、脈衝測量、Endurance和Retention的方法來研究元件特性。因此,第二章會介紹實驗的測量設備和波形設置。在第三章中,驗證雙 HZO 鐵電場效應電晶體 (FeFET) 可多階操作 (MLC)以 提高NVM密度。與單HZO FeFET 相比,金屬層/鐵電層/金屬層/鐵電層/矽基板 (MFMFS) FeFET 能夠在 ±3 V 的超低寫入/抹除電壓 (VP/E) 下實現2-bit位操作,並具有穩定的數據保持能力>104秒和>107次循環的耐用性。此外,通過使用金屬層/鐵電層/介電層/鐵電層/矽基板結構將記憶窗戶(MW)擴大至2.6 V,讀取錯誤率(ER)比單HZO低600倍。兩種雙HZO FeFET都通過使用電壓調整的方案展示具有高度線性和對稱性的深度學習能力。 在第四章中,完成具有>106高開關電流比(Ion/Ioff)和4cm2/V⸳s 遷移率的無退火 In2O3 薄膜電晶體 (TFT),採用20sccm的Ar和15 W的濺射系統沉積。最後將鐵電電容與In2O3-TFT串聯,成功觀察到磁滯特性,並完成FE電容與In2O3-TFT的面積比對磁滯差異進行實驗驗證。因此,In2O3-TFT 有望在未來與鐵電記憶體整合,用於後端製程 (BEOL)。Item 相容於後段製程之雷射退火鐵電氧化鉿鋯數值模擬(2022) 唐松箖; Tang, Song-Lin將具有鐵電效應之氧化鉿鋯 (HZO) 的鐵電記憶體 (FeRAM),並採用BEOL (Back end of line) 後段製程與邏輯 IC 整合。為了得到其良好的鐵電記憶體殘餘極化量 (Remnant Polarization)、矯頑場 (Coercive field) 以及ID-VG 遲滯特性,透過退火使 HZO 薄膜結晶化是相當重要的步驟,由於採用 BEOL 後段製成,將無法以一般 RTA (Rapid Thermal Annealing) 進行退火,因為下層的邏輯 IC 無法承受 RTA 退火的高溫,所以選擇用雷射退火 (Laser Annealing) 的方式將 HZO 薄膜結晶化。由於實驗無法準確量測 HZO 薄膜在退火時的溫度分布,因此本實驗透過模擬 Nd: YAG 雷射退火使鐵電記憶體結晶化的過程,以及下層邏輯 IC 的在退火時的溫度狀況,並模擬不同結構與不同材料,探討熱在不同結構與不同材料中的傳遞與分布。Item 具垂直異向性之一維磁性多層奈米線與磁性穿隧接面奈米元件(2011) 陳柏源; Po Yuan Chen具垂直磁異向性之奈米材料於發展下一代磁紀錄媒體與磁電阻式隨機存取記憶體扮演極重要的腳色。結合電化學電沉積技術與具奈米孔洞之氧化鋁模板可達成大量製造、低成本與高密度之目標。本研究所製備之鈷與鎳鐵合金之奈米線被證實具備垂直磁異向性且可透過磁晶異向性與形狀異向性來調整。結合具垂直磁異向性之鎳鐵合金奈米線與鈷鐵硼薄膜之磁性穿隧接面元件已成功被製造與探討。於低溫10K的環境下,鈷鐵硼薄膜厚度為1.5奈米時,其磁阻為104%,而鈷鐵硼薄膜厚度為1.0奈米時,其磁阻為110%,且在鈷鐵硼薄膜厚度小於1.0奈米時,於無固定層的條件下元件呈現出自旋閥的特性。Item 曲率調控羅丹明6G與氧化鋅奈米柱同調隨機雷射系統之閥值研究(2017) 張辰宇本論文使用水熱法成長氧化鋅奈米柱陣列,並整合羅丹明6G(Rhodamin 6G)增益介質,透過短脈衝雷射激發來產生隨機雷射(random laser)。藉由無序氧化鋅奈米柱陣列散射,R6G出射光子其輻射強度隨著外加脈衝雷射激發能量的改變,主要可分成三種不同光子輻射區間,分別為自發輻射(spontaneous emission)、放大自發輻射(amplified spontaneous emission, ASE)及具同調性(coherent)的隨機雷射輻射。此外,產生隨機雷射的臨界激發閥值,與氧化鋅奈米柱陣列的外在表徵有強關聯性。我們進一步地將氧化鋅奈米柱陣列生長在可撓曲之軟性基板; 藉由改變基板之彎曲曲率,有效地改變R6G出射光子與氧化鋅奈米柱陣列間的碰撞平均自由路徑(mean free path, MFP),進而調控該隨機雷射系統的臨界激發閥值。我們相信該新穎閥值可調控式隨機雷射,在建築上或管線監控中,將有很大的產業利用性,也將近一步地擴充無序隨機散射雷射的相關應用。Item 石墨烯與光子晶體共振腔結構之表面電漿探討及其在生醫感測的應用(2021) 鄭宜陞; Cheng, Yi-Sheng近年來,光學感測器對於生醫相關檢測的應用逐漸受到重視,其快速、便利及其非破壞性的檢測方式是其一大優勢,此外,觀察物質的光學特性也為檢測提供了另一個判斷的依據,特別是藉由侷限表面電漿能量的奈米結構更是在生醫感測的領域被廣為應用。本論文以有限元素法針對光子晶體結構結合石墨烯的表面電漿的光學感測器進行設計與應用。所設計的感測器類型為擁有高度電可調性的混合電漿生物感測器,可用於辨識中紅外波段範圍內的蛋白質分子指紋。此類型元件設計由一個光子能隙結構和一個以缺陷形成的共振腔組成,以此將電漿能量限制在共振腔內,實現光與分析物之間的強交互作用,而單層的石墨烯佈置於腔體結構中,除了能夠增強表面電漿的效應之外,也提供了元件的電性可調能力,藉由在腔體中填滿欲分析之物質以進行感測。此外,也藉由不同材料特性的搭配及石墨烯所佈置的範圍作了兩種設計,文中也針對此兩種不同設計的結果深入探討。設計的元件具有很高的等效靈敏度,而等效靈敏度的定義為在將分析物添加到腔體中時共振頻率偏移對應於等效折射率所變化之比例,而等效折射率是同時考慮到腔體結構和分析物的光學特性所影響的參數,不同於其他感測器只考慮了物質折射率變化,為本文的特點之一。而此類型元件另一個優點就是透過向石墨烯施加不同的偏壓來實現廣範圍的電可調性,以此可以調整腔體的等效折射率來提高針對非預設目標分析物的靈敏度。此類型元件的結構概念是依據光子理論所設計,並可透過由下而上的生長的薄膜製程及蝕刻技術來完成元件的製作,此研究結果預期對於微奈米尺度生物樣品的識別和紅外光學感測器是有益的。Item 超導量子干涉心磁儀應用於高血脂兔子心臟心磁圖與生理學的研究(2006) 洪斌峰摘要 在磁屏蔽屋(Magnetically Shielded Room,MSR)的環境下,我們使用64 channel的平面式一階SQUID梯度計系統,量測兔子的心磁圖(magnetocardiography,MCG)以探討其心臟之生理學參數。所量測的兔子分為二組,一組為高血脂兔子,一組為健康的正常兔子。其中,高血脂的兔子是在D0週(基準週,baseline 12週)之後開始餵食高血脂飼料,而正常的兔子都餵食一般的正常飼料。進行心磁的時候並同時進行抽血檢驗,紀錄兔子當時的總膽固醇(T-CHO)、體重等參數。 對心磁訊號分析其數據後,我們發現到高血脂兔子在餵食高血脂飼料後,其R波及S波的α角範圍皆由原本的第三、第四象限而偏移到第一象限,而正常的兔子的α角則保持原來的方向範圍(第三、四象限)沒有改變。在平整度方面(Smoothness Index, SI),QT時間間隔平整度(QT time-interval smoothness index ,SI)及QRS時間間隔平整度(QRS time-interval smoothness index ,SI),SI值在餵食高血脂飼料之後漸漸都有往上升的現象。而正常兔子的SI值變化,則是隨著時間而慢慢往下降的趨勢。 然後我們也對兔子做降血脂的心磁觀察,還有對兔子注射磁流體後的心磁圖量測,這會在後面章節裡做討論。Item 繪圖處理器於數位全像顯微術之研究(2010) 李易達; Yi-Ta Lee在本論文中,主要探討繪圖處理器的平行運算特性及其應用於離軸式數位全像顯微系統之數值重建與相位展開,以達到即時獲得量測樣本的三維輪廓。本研究工作首先探討繪圖處理器平行處理的特性及其與串行處理運算效能之比較,並且更進一步的利用繪圖處理器於數位全像術之數值重建運算,將其演算法平行化。在重建的過程中將結合濾波處理以提高重建影像對比度,最後將所量測到樣本的相位資訊經由相位展開演算法來獲得樣本的三維資訊,並且藉由繪圖處理器高速運算的能力,以達到即時運算與顯示的效果。本研究證實了使用繪圖處理器的高速平行計算特性於數位全像顯微術具有即時重建與相位展開的潛能。內文中將提出相關模擬與實驗結果,並加以分析與說明。Item 透明導電層ITO生長機制與特性分析及太陽能電池應用(2009) 吳靖揚本研究主要在於探討銦錫氧化物之光電特性,進而應用至矽奈米柱太陽能電池之上電極,電極主要功用為收集載子,因太陽能電池本身為吸收光並將光轉換為電之元件,因此其電極必須具備透光度極高特性,而電極本身導電度品質亦會影響到收集載子之效率,故高導電特性電極亦為必要條件。本研究之銦錫氧化物採用射頻磁控濺鍍法製作,經由一系列鍍膜參數探討出最佳鍍膜條件,再經由真空退火法尋I求最佳退火溫度與時間。基板溫度300℃濺鍍出之銦錫氧化物經過500℃、20分鐘真空退火後,於可見光區300 nm至700 nm波段之平均穿透率可高達90% 以上,而片電阻亦可低於10Ω/□。X-ray繞射分析部分,繞射峰包含(221)、(222)、(400)、(440)與(662),且可發現隨退火溫度上升,(222)繞射強度有漸增趨勢,其薄膜結晶性更佳,而薄膜表面粗糙度亦可低於2 nm。 銦錫氧化物應用於太陽能電池上電極,對於矽奈米柱直徑為400 nm之p+-i-n結構太陽能電池而言,整體光電流密度從4.47 mA/cm2提升至27.6 mA/cm2,光轉電效率從0.45% 提升至4.73%,此乃透明導電層大幅縮短了載子行走距離,使電極之載子收集效率提升而導致光電流大幅增加,光轉電效率亦上升十倍之多。Item 奈米電鍍轉印微影術的研發(2006) 吳俊億; Wu Chun Yi在本論文中,我們試著研發能降低成本、提高產能的奈米微影技術,我們稱之為奈米電鍍轉印微影技術。其構想為利用現有的製程技術,製作模仁與轉印基板,以硫酸鉀(K2SO4)水溶液為電鍍液,銅為鍍材,配合轉印的概念,將模仁上的圖案透過電鍍的方式轉印於轉印基板上,而電鍍轉印出的金屬圖案可當作遮罩,對轉印後的轉印基板進行蝕刻即可得到所需的圖案。目前在微米等級方面,已成功轉印出3微米的線寬,在奈米等級方面,在模仁有其缺陷的情況下,只能證明電鍍液在壓印時能充滿在深寬約為300與380奈米的結構上,且轉印出來的線寬無論是在奈米與微米等級皆與模仁相近。 本論文的主要內容,為奈米電鍍轉印微影技術的工作機制說明,並設計相關實驗來驗證我們提出的機制,針對實驗的結果做分析與討論,最後提出未來研究的方向。Item 高熵合金在兆赫波段之導電率和光學常數探討及其應用(2019) 呂佳燕; Lu, Chia-Yen金屬材料對人類的發展一直都扮演著不可或缺的角色。在過去為了提升金屬的某些特性,我們以一種主要金屬,再添加少量的元素改變其原來性質,使之優化並可應用在更多更廣的領域。隨著添加越多難易度也越高,甚至合金也越容易脆化。近年來,由於高熵合金的出現,更開啟了設計新材料的方向。 「熵」在物理學裡指亂度,在一主要金屬裡混合越多元素意指亂度越高,一般定義由五種或五種以上的元素所構成的合金亦可稱為高熵合金。除了可以合成我們一般所認知的塊材外,亦能以固溶基體的方式呈現。由於至今精進的技術,使之劃分為兩代;第一代屬於各元素約等原子比,第二代則是元素間非等原子比,兩代差異在於後者可以提供更優越的性能。不同元素、不同比例、不同尺度下的高熵反應會造成有不同的物理特性,例如:磁特性、高強度、高硬度、耐磨性、耐高溫、耐腐蝕…等。 現今在兆赫波光譜可快速得到很多光學資訊。例如:折射率、光電導率、電子遷移率…等。高熵合金有千變萬化的可能性,為了方便提升量測效率,這次想藉由THz來探討此材料的特性。THz量測的好處在於非接觸性、光子能量低(4.1meV)且快速。對於分部不均勻的高熵合金來說,傳統接觸性的量測方法,可能在量測過程中破壞材料結構,因此可以透過此非接觸性的方法量測。由於THz對金屬有很強的反射,所以本論文是用奈米等級的NbMoTaW薄膜,使用DC磁控濺鍍的方式鍍在高阻質的矽基板上作為樣品,針對不同的厚度去做量測。再利THz打在此金屬薄膜上,看訊號相位、振幅的變化,經運算成電導率、穿透率與探討其性質。