學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73896
Browse
8 results
Search Results
Item 新穎高效率太陽能電池之研究(2015) 姚詠祺; Yung-Chi Yao近年來,由於經濟的快速發展與人類的頻繁活動,人們對自然資源的需求與日俱增,其結果造成了各種天然資源日益短缺。為了解決人類永續使用能源的問題,科學界以及工業界正如火如荼地發展各種替代性能源。在這些替代性能源中,太陽光長期以來一直被視作永恆的能量來源,因此與太陽能相關的技術得以迅速地蓬勃發展,而其中以太陽能電池更是被廣泛地研究和討論。在本論文中,我們主要是根據不同電池材料的組成提出許多新穎的結構來提升太陽能電池的轉換效率。首先,我們已經成功地證明結合二維矽奈米柱(線)陣列和斜向銦錫氧化物薄膜的新穎抗反射膜對於入射光有大角度、寬頻譜的強吸收率,因此能有效提升該太陽能電池的轉換效率。第二,我們利用數值模擬方法分析出一不靠外部(雜質)摻雜、僅利用漸變氮化銦鎵的銦含量來製作單一接面滿足全光譜響應的高銦含量三族氮化物n-i-p太陽能電池。最後,我們提出利用硒化鎘量子點調製太陽光譜來提升磷化銦鎵/砷化鎵/鍺串聯式太陽能電池的轉換效率。本論文依照各個章節不同的研究主題和使用方法將摘要進行分類,其分類如下: 1. 利用矽奈米柱(線)陣列搭配斜向銦錫氧化物膜增加太陽能電池光學吸收之應用 矽奈米柱(線)在太陽能電池方面的應用已被廣泛認為是相當具有吸引力的。在本研究中,我們分別利用感應電耦合式乾蝕刻技術和氧化還原-金屬誘導化學蝕刻方式製作出二維矽奈米柱(線)陣列。為了進一步降低發生在空氣和矽奈米柱(線)界面處的菲涅耳反射,我們提出利用斜角濺鍍沉積技術將奈米尺度等級的斜向銦錫氧化物薄膜作為空氣和矽奈米柱(線)間的中間層。由於矽奈米柱(線)能提供遮蔽效應,入射的銦錫氧化物氣流將被優先地沉積在矽奈米柱(線)的頂部,最終我們製作出的斜向銦錫氧化物薄膜可達到幾乎是無損且連續的表面。斜向銦錫氧化物薄膜除了本身擁有低折射率、高透明度外,在快速熱退火450℃的處理下,其薄膜的電阻率約為1.07x10^-3 Ω-cm,其摻雜濃度和載子遷移率分別為3.7x10^20 cm-3和15.8 cm2/V-s,亦可直接拿來當作電池的接觸電極。根據理論計算,該結構的轉換效率相對於單晶矽裸片的太陽能電池約有42% 的提升,證明上述的奈米結構組合對於入射光有大角度、寬頻譜的強吸收率。然而在實際元件製作上,元件上層與銦錫氧化物接面因極性不匹配以及奈米線的高深寬比導致高的串聯電阻和低的並聯電阻,其結果伴隨著高的逆向飽和電流加劇光生載子在表面復合,進而影響了整體元件的轉換效率。 2. 感應極化摻雜三族氮化物太陽能電池之研究 我們利用理論計算方式來評估並設計出新型感應極化摻雜氮化銦鎵n-i-p太陽能電池。該方法並不使用傳統雜質摻雜,反而是藉由線性增加(0%增至30%)和降低(30%降至0%)氮化銦鎵裡每個單位電池的銦含量所導致的感應極化摻雜來製作太陽能電池的p型和n型區,其中p型和n型區的載子濃度均達到3×10^18 cm-3。在氮化銦鎵n-i-p太陽能電池裡,由於每個單位電池具有大小相同且均勻的極化電荷,將其依銦含量漸變堆疊可預期該元件的電位分佈有平滑的空間變化,這樣一來減緩能帶在異質界面處的不連續性,並有利於光生載子能高效率地流動和收集。最重要的是導電n型和p型區是透過靜電場的離子化而不是熱活化所形成的,該感應極化電場的載子濃度與熱凍結效應無關。因此,感應極化摻雜的三族氮化物n-i-p太陽能電池即使在低溫環境下操作亦可以提供穩定的轉換效率。 3. 使用硒化鎘量子點改善磷化銦鎵/砷化鎵/鍺串聯式太陽能電池之電流匹配與提升其轉換效率之研究 三五族串聯式太陽能電池是最有效提供極高轉換效率的電池結構。然而該元件裡每個子電池之間的電流不匹配問題是引起該電池轉換效率實驗值偏離理論值一顯著挑戰。在本研究中,我們使用硒化鎘量子點來提升被限制的子電池光電流以匹配其他子電池的電流輸出並予以提升整體磷化銦鎵/砷化鎵/鍺串聯型太陽能電池的轉換效率。該限制的光電流被提升的主要原因來自於量子點做為光子轉換器的基本機制。不同尺寸的量子點有調製太陽光譜的獨特能力,因此該太陽能電池提升的效率與選擇量子點的尺寸大小有絕對的關係。本研究結果顯示透過適當地選擇量子點,我們發現佈上直徑4.2 nm、濃度7 mg/ml的硒化鎘量子點在磷化銦鎵/砷化鎵/鍺串聯型太陽能電池上,其轉換效率與沒有佈上任何量子點的電池相比能有效提升10.39%。Item 奈米幾何結構對矽晶薄膜太陽能電池光學吸收之影響與研究(2012) 呂柏緯; Po Wei Lu本論文是利用有限時域差分法對於2μm厚之薄膜矽晶提出三種不同之表面奈米結構(包含:奈米柱、奈米錐與奈米鏡陣列)並對其光學吸收提升進行數值計算。相較於奈米柱與奈米錐陣列,奈米鏡陣列展示出了最高能量轉換效率。此結果主因於奈米鏡陣列具有將入射光耦合至共振模態的能力,使得入射光子於長波長區間可增加其光學路徑。而本研究中,奈米柱、奈米錐與奈米鏡陣列其最佳能量轉換效率分別為η=17.4%、18.8%與22.0%。而奈米柱、奈米錐與奈米鏡陣列相對於具有抗反射模之平面矽晶薄膜來說,其轉換效率分別提升為26.1%、36.2%與59.4%。這些發現顯示出矽晶薄膜太陽能電池於其表面製作奈米結構將可提升光學之吸收。Item 氮化銦鎵量子井結構應用於太陽能電池及其特性研究(2011) 鄭俊茂本論文中將氮化銦鎵量子井磊晶成長於圖案化藍寶石基板上來提升太陽能電池轉換效率。與傳統的太陽能電池結構比較之下,差排缺陷(threading dislocation)密度可以從1.28×109 降低至3.62×108cm2,使得太陽能電池的短路電流(Isc)提升60%。此外,氮化銦鎵量子井太陽能電池磊晶於圖案化藍寶石基板與一般的藍寶石基板其開路電壓(Voc=2.05V)與填充因子(FF=51%)幾乎相同。我們歸納元件效能的提升主要是磊晶層結晶品質的改善,其減少量子井中非輻射複合中心對光致載子的侷限效應,最終提升光致載子傳輸至元件外部的整體效率。Item 透明導電層ITO生長機制與特性分析及太陽能電池應用(2009) 吳靖揚本研究主要在於探討銦錫氧化物之光電特性,進而應用至矽奈米柱太陽能電池之上電極,電極主要功用為收集載子,因太陽能電池本身為吸收光並將光轉換為電之元件,因此其電極必須具備透光度極高特性,而電極本身導電度品質亦會影響到收集載子之效率,故高導電特性電極亦為必要條件。本研究之銦錫氧化物採用射頻磁控濺鍍法製作,經由一系列鍍膜參數探討出最佳鍍膜條件,再經由真空退火法尋I求最佳退火溫度與時間。基板溫度300℃濺鍍出之銦錫氧化物經過500℃、20分鐘真空退火後,於可見光區300 nm至700 nm波段之平均穿透率可高達90% 以上,而片電阻亦可低於10Ω/□。X-ray繞射分析部分,繞射峰包含(221)、(222)、(400)、(440)與(662),且可發現隨退火溫度上升,(222)繞射強度有漸增趨勢,其薄膜結晶性更佳,而薄膜表面粗糙度亦可低於2 nm。 銦錫氧化物應用於太陽能電池上電極,對於矽奈米柱直徑為400 nm之p+-i-n結構太陽能電池而言,整體光電流密度從4.47 mA/cm2提升至27.6 mA/cm2,光轉電效率從0.45% 提升至4.73%,此乃透明導電層大幅縮短了載子行走距離,使電極之載子收集效率提升而導致光電流大幅增加,光轉電效率亦上升十倍之多。Item 利用單層聚苯乙烯奈米球於矽基太陽能電池抗反射層之研究(2008) 林倉毅; Chang Yi Lin目前太陽能電池在太陽光入射電池的表面時,會造成約40%以上光反射,其主要反射原因是因外部電極的大小會阻擋光的行進路徑,另外抗反射層的尺寸大小或材料的匹配也是影響光反射的原因之一。然而在1967年學者Bernhard利用電子顯微鏡在蛾眼的角膜表面發現約有200nm大小的週期性凸起的結構,此一結構會直接改變光進入空氣與角膜間的反射係數,可增加光的穿透性並降低其反射率。因此本論文研究將藉由蛾眼效應(Moth eye effect)的方式來製作矽基抗反射結構層。 此實驗是將聚苯乙烯奈米顆粒球直接鋪設於矽基板上,透過反應式離子蝕刻機(Reactive Ion Etching)做乾式蝕刻,並利用氧氣氣體蝕刻控制奈米顆粒球的尺寸大小,再利用四氟化碳氣體蝕刻控制矽基板之深度後,以製作出矽基抗反射層結構。製作完成之矽基抗反射層結構經由光譜儀量測其反射率,量測波長範圍為400nm至800nm。由反射光譜可得知,不含抗反射層結構之平面矽基板光反射量約為40%;製作抗反射層結構後,其光反射量最多可降低至8.8%,如此可達到抗反射的效果。以此方法製作之抗反射層結構具有較低成本、製作簡易、設備要求低的優點,並冀望可應用於矽晶太陽能電池上,並改善矽基抗反射層結構及改善太陽能電池整體之效率。Item 透明導電膜氧化鋅摻雜鋁之成長與應用於矽薄膜太陽能電池之研究(2013) 鄭僑人; Jheng,Ciao-Ren本論文是利用射頻磁控共濺鍍(Co-Sputtering)系統製備p-type矽薄膜,利用不同功率的鋁靶和非晶矽靶同時濺鍍於玻璃基板上達到摻雜的目的之後進行熱退火,系統地分析及量測p-type矽薄膜之電性,進而探討應用於n-type silicon wafer 太陽能電池元件後的光學特性與電性分析。 並研究AZO(Al 1%)靶材濺鍍於玻璃基板上,在不同的退火溫度其薄膜的電性分析、光學特性,得到一ρ=8.5 x 10-4Ω-cm、μ=24 cm2/V•s、 n=3.1x1020 1/cm3、可見光部分穿透率 84% 的AZO薄膜,最後製備於太陽能電池元件之可行性,最終在Al/p-Si/n-Si wafer 結構上獲得一開路電壓為0.59V,光電流為0.07 mA/cm2 ,轉換效率為0.02% 的太陽能光伏元件。Item 氧化鋅摻鋁與鋁誘發多晶矽薄膜之異質接面太陽能電池研究(2015) 夏晨凱; Hsia, Chen-Kai摘要 本實驗是在不銹鋼基板上利用n型氧化鋅摻鋁薄膜(AZO)與p型多晶矽薄膜結合成異質接面太陽能電池。其中p型多晶矽薄膜是利用鋁誘發多晶矽的方式製成。因此先利用射頻濺鍍系統在玻璃基板濺鍍鋁薄膜與非晶矽薄膜,並改變其退火溫度使鋁誘發非晶矽形成p型再結晶矽薄膜探討其導電性分析,之後與氧化鋅摻鋁薄膜在不銹鋼基板上形成可饒式異質接面太陽能電池。 其中氧化鋅摻鋁薄膜(AZO)先濺鍍於玻璃基板,改變薄膜厚度,探討其電性與光學特性。藉由厚度的改變可得較低的電阻率、高摻雜濃度與移動率,分別為3.49×10-4 Ω-cm、1.12×1020 cm-3、13.87 cm2/V‧S、並且擁有好的光穿透率光率的光電特性,約為80%左右。 利用AZO作為太陽能電池中的上電極以及n型接面與p型再結晶薄膜濺鍍於不銹鋼基板作為可繞式太陽能電池。可獲得一開路電壓為0.31 V,光電流為0.1 mA,光電轉化效率為0.0113 %的太陽能電池。Item 在N型矽基板以鋁誘發多晶矽薄膜以及ZnO:Al(AZO)抗反射層之太陽能電池研究(2015) 吳旭展; Wu, Hsu-Chan本論文是利用射頻磁控濺鍍系統,分別濺鍍鋁、矽薄膜,經由熱退火方式,使鋁誘發矽形成p型多晶矽,於本質矽基板之上利用不同退火時間進而達到摻雜的目的;並及量測及分析p-type矽薄膜之電性。進而探討應用於n型矽基板上,製備成太陽能電池元件後並量測光電轉換特性。 並研究ZnO:Al (AZO)薄膜濺鍍於塑膠基板上,在不同的薄膜厚度量測其薄膜的電特性及光特性,得到一ρ=4 x 10-4Ω-cm、μ=21 cm2/V·s、 n=6.4 x1020 1/cm3、可見光部分穿透率 75% 等特性於1100 nm之ZnO:Al (AZO)薄膜。 最後分別使用AZO薄膜以及鋁製備於電極部分進行太陽能電池光電轉換量測,最終我們在Al/p-Si/n-Si wafer/Al 結構上獲得一開路電壓為0.41V,光電流為0.38 mA/cm2 ,轉換效率為0.1% 的太陽能光伏元件。