學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73896
Browse
3 results
Search Results
Item 矽量子點與矽量子線在光檢測器上之應用(2009) 李昌學; Chang-Hsueh Li於本篇論文中,我們利用薄膜沉積與電子束微影與蝕刻技術,製作具多層矽量子點與矽量子線結構之光電子元件。薄膜材料乃一維之量子侷限效應,再透過電子束微影以及蝕刻製程參數的調控,製作出另外兩個奈米維度之侷限效應,亦即零維之量子點及一維之量子線,能吸收各種不同波長之入射光,因此對短波長與可見光具極靈敏光電特性之光檢測器。 於光檢測之量測中,於室溫環境下利用不同波長之光源照射至元件,藉由矽量子點/矽量子線將光訊號轉換為電訊號。由量測結果可歸納出二大部分。第一部份藉由照射不同波長之光源與其照光強度之變化,觀察其量子效率以及光響應度。第二部份則透過元件基板加熱溫度之不同(23℃ ~ 100℃),其量子效率與光響應度,以及外加不同偏壓條件下與電流的相依特性。結果顯示在短波長及可見光範圍中,量子效率與光響應度皆非常高;而元件本身之暗電流特性都非常低,所得到光電流與暗電流可相差三個數量級以上之增益值,並且具高響應速度與高靈敏度之光學開關切換特性。另外此元件亦可透過元件基板加熱之溫度不同來調控光電流之大小,即此元件具有熱載子效應。故本元件也可用來探討熱電元件之應用。Item 矽量子點太陽能電池之應用(2009) 黃俊琪; Chun Chi Huang當全球暖化問題愈來愈嚴重之時,綠色能源亦愈受重視,因此本研究係以半導體相關製程技術製作矽量子點太陽能電池(Silicon Quantum Dot Solar Cell)之綠色能源。 由量子觀念指出當矽材料三維方向皆於奈米尺度以下,便有以下三種特性: (1)多重激發;(2)量子侷限效應及(3)中間能隙之概念,因此本研究利用此三種特性應用於太陽能電池中。本實驗利用水平低壓爐管製作矽量子點於氮化矽膜層中,沉積氮化矽/非晶矽/氮化矽三明治夾層結構,並進行高溫退火以析成矽量子點於氮化矽中,為得到最高密度及適當尺寸之矽量子點,分別改變退火時間及非晶矽沉積時間以調整矽量子點密度及尺寸,並利用穿隧式電子顯微鏡(TEM)以進行分析。 本實驗主要製作n-i-p及n-p結構太陽能電池,於n-i-p結構中,改變n層多晶矽厚度及i層矽量子點層數,以得到太陽能電池最佳轉化效率,並且於量子效率及光響應度量測方面,皆量測到寬頻譜特性,以提高其效率,於上層再鍍製抗反射層,以提高短路電流密度,以提升整體效率。 而於n-p結構部分,製作n型矽量子點於p型矽晶片上,並比較不同層數矽量子點對太陽能特性之影響,此外為提高電子吸收效率,於最上層進行沉積透明導電層(ITO)及抗反射層(AR),並且設計四種電極分別為,鈦/鋁/、鈦/鋁/ITO、鈦/鋁/ITO/AR及鈦/鋁/AR,比較其轉換效率,並針對其原因以進行分析。除此之外,亦進行量子效率及光響應度之量測,綜合以上,結合出最佳結構以得出最高之轉換效率。 綠色能源議題日漸受到重視,因此製作高效率矽量子點太陽能電池為本研究重要課題之一。Item 矽量子點光檢測器之研究(2008) 廖庭維; Ting-Wei Liao在本篇論文中,提供一種具多重奈米量子點檢測光子之光電子元件,藉由“重複堆疊結構”形成矽量子點與穿透接面,做為光檢測器之檢測構件,進而製作出矽量子點光檢測器。 在光檢測之實驗中,將針對奈米級光檢測器元件結構做光電效應特性之量測,利用不同波長之光源照射至矽量子點,藉由矽量子點扮演光轉換為電之主要角色,量測結果顯示,此元件吸收光源進而產生光電流之轉換效率非常高,具有高敏感與非常靈敏之光切換特性,並且元件本身之雜訊與暗電流特性都非常低。另外,經過長時間之光檢測實驗測量之後,其光電效應之特性也不會改變。元件在不同波長(300 nm ~ 1000 nm)之光源照射下,所得量子效率與光響應度非常高。因此,針對量測結果,進一步分析元件中光子與電子間主要之交互作用,即探討半導體矽量子點光檢測器之主要工作原理與其影響。