Skip to main content
Communities & Collections
All of DSpace
Statistics
English
العربية
বাংলা
Català
Čeština
Deutsch
Ελληνικά
Español
Suomi
Français
Gàidhlig
हिंदी
Magyar
Italiano
Қазақ
Latviešu
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Српски
Svenska
Türkçe
Yкраї́нська
Tiếng Việt
Log In
Log in
New user? Click here to register.
Have you forgotten your password?
Home
科技與工程學院
電機工程學系
學位論文
學位論文
Permanent URI for this collection
http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890
Browse
Search
By Issue Date
By Author
By Title
By Subject
By Subject Category
Search
By Issue Date
By Author
By Title
By Subject
By Subject Category
1 results
Back to results
Filters
Author
search.filters.author.吳建霖
1
search.filters.author.Wu, Chien-Lin
Subject
1
search.filters.subject.convolution neural network
1
search.filters.subject.deep learning
1
search.filters.subject.generative adversarial network
1
search.filters.subject.shadow removal
1
search.filters.subject.卷積神經網路
Show more
Search subject
Submit
Browse subject tree
Date
Start
End
Submit
2022
1
Has files
Yes
Reset filters
Settings
Sort By
Accessioned Date Descending
Most Relevant
Title Ascending
Date Issued Descending
Results per page
1
5
10
20
40
60
80
100
Search
Author: search.filters.author.吳建霖
×
Has files: Yes
×
Search Tools
Search Results
Now showing
1 - 1 of 1
No Thumbnail Available
Item
疊代推進生成對抗網路用於陰影去除
(
2022
)
吳建霖
;
Wu, Chien-Lin
Show more
隨著科技的高速發展,深度學習在工業、軍事、民生科技處處都有大量的應用,現今運用在影像處理上的深度學習技術不斷進步,影像的去除如影像除霧、去反光、去陰影等都是電腦視覺領域中具挑戰性的任務。本論文研究目的為針對影像陰影去除提出了迭代推進生成對抗網路,首先我們輸入陰影圖藉由兩個生成器網路分別生成出無陰影的圖及殘差陰影圖,將兩者合成得到陰影圖,與輸入進行比對,最後將合成的圖再次輸入至網路重複上述步驟直到收斂,透過迭代推進的方式提升陰影移除的效果。此外為了使結果更加優異,我們的生成器網路加入了注意力機制,讓模型更專注於影子的部分,以及長短期記憶,使我們在長序列訓練過程中有更好的表現,最後是修復網路,以進一步改善生成的結果。我們與傳統方法以及近年來基於深度學習所提出的陰影去除方法比較,實驗結果表明本論文所提出的迭代推進方法有更優異的結果。
Show more