學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    用於陪伴型機器人之輕量化深度學習音樂情緒辨識模型
    (2024) 林彥榕; Lin, Yen-Jung
    為了應對現今社會高齡化,導致老人缺乏陪伴導致的孤獨問題,本研究提出用於陪伴型機器人Zenbo Junior II的音樂情緒辨識模型來解決老人孤獨導致的情緒問題。在音樂情緒辨識這個研究領域中,雖然也有很多人已經在進行這項研究,但是這些研究中沒有能用於Zenbo Junior II的輕量化架構。本研究提出的方法是使用一維卷機神經網路(1D-Convolutional Neural Network, 1D-CNN)替換掉常用的2D-CNN並且使用閘門循環單元(Gated Recurrent Unit, GRU)使模型能更好的考慮音頻特徵的連續性。在訓練完模型後儲存並應用於Zenbo Junior II上,先將另一研究的情緒對應成4種情緒後播放音樂調適情緒。本研究提出之模型在PMEmo數據集上Valence和Arousal分別為0.04和0.038與其他模型相比效能最好。並且參數量僅有0.721M浮點運算次數僅有9.303M,遠小於其他相比較之模型。運算強度最靠近Zenbo Junior II之最佳工作點,且模型辨識音樂所需推理時間僅需229毫秒,可以即時辨識出音樂的情緒。這些表明本研究成功提出一個輕量化且效能優異,並且可以在Zenbo Junior II上運行的模型。