學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890
Browse
1 results
Search Results
Item 應用於自動化生產及分揀之物件姿態估測系統(2020) 陳薪鴻; Chen, Hsin-Hung近幾年來,產業為了提升生產效率,大量使用自動化生產設備取代人力,透過電腦視覺與機器運動控制的整合搭配,已大幅增加自動化生產的效率。受惠於GPU計算平台的普及,不論機器學習或是深度學習技術紛紛出現於各種應用場景之中,以往使用電腦視覺方法不能或是難以解決的問題,透過引進深度學習都有出色的表現。本文主要研究內容可分為三部分:第一部分利用輝達(Nvidia)所提出之基於深度學習單攝影機物件姿態估測演算法(Deep Object Pose Estimation, DOPE),其中包含產生物件的立體模型,再匯入Unreal Engine遊戲引擎並搭配輝達深度學習資料集合成器(Nvidia Deep learning Dataset Synthesizer, NDDS)套件,產生訓練數據,用來對神經網路進行權重訓練,完成後即可用來對物件姿態進行估測;第二部分使用加拿大Kinova公司所生產之Jaco 2四軸機械手臂並透過機器人作業系統(Robot Operating System, ROS)完成物件夾取功能;第三部分運用PyQt設計一圖形使用者介面(Graphical User Interface, GUI)整合前兩部分,讓使用者透過單一介面即可獲得物件估測和手臂執行資訊,也可透過其進行參數調整。模擬於生產線上應用,用以輔助加工與分類之程序,達成自動化生產製造之目的。