學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890
Browse
1 results
Search Results
Item 基於影像到動作轉換之未知環境下目標物件夾取策略(2023) 林昱維; Lin, Yu-Wei本論文的主要目標是利用僅有的彩色影像,使機械手臂在沒有相關的3D位置信息的情況下夾取靜態或動態目標。所提出方法的優點包括在未知環境下,為各種類型的機器人手臂提供一類通用控制策略、能夠自主生成相應的自由度動作指令的影像到動作轉換,以及不需要目標位置。首先,使用YOLO (You Only Look Once)算法進行影像分割,然後將彩色影像分成不同的有意義的對象或區域。採用近端策略最佳化(Proximal Policy Optimization, PPO)算法對卷積神經網絡 (CNN)模型進行訓練。機械手臂和目標物件的彩色影像以及馬達的轉動量分別是CNN模型的輸入和輸出。為了避免機器人手臂與物體碰撞造成機構損壞,在深度增強式學習訓練中使用Gazebo模擬環境。最後,實驗結果展示了所提出策略的有效性。