學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890

Browse

Search Results

Now showing 1 - 7 of 7
  • Item
    用於光學同調斷層掃描之基於深度學習和聯邦學習框架之視網膜積液分割技術
    (2024) 林志韋; Lin, Chih-Wei
    在眼科領域,光學相干斷層掃描(OCT)是檢測眼病的關鍵技術。偏鄉資源有限僅能使用輕量化設備,但其計算能力不足,難以支撐較為大型模型的訓練,以及數據缺乏和隱私問題阻礙醫院數據共享。首先針對輕量化設備,基於LEDNet設計了高效的LEDNet(α)模型,通過調整通道、添加Shuffle Attention模塊和Group Normalization。使用成本低廉的樹莓派5進行訓練,適合偏鄉需求,為解決隱私問題,引入聯邦學習,通過上傳本地模型參數聚合全局模型,避免資料直接上傳。本研究提出Krum(α)算法,在客戶端損失函數中添加近端項並考慮模型自適應性,改善淘汰機制,改進基於歐氏距離淘汰惡意模型的Krum算法。最後實驗結果顯示,在AROI、DUKE、UMN和RETOUCH數據集上,AROI積液類別提高了3.4%,DUKE提高了5.9%,UMN提高了2.4%,RETOUCH提高了1.4%。
  • Item
    基於臉部及語音特徵之輕量化深度學習情感辨識系統
    (2024) 呂健維; Lu, Chien-Wei
    因應近年來高齡化導致老人照護人力缺乏,本研究提出了一種可被應用於陪伴型機器人(Zenbo Junior II)上的整合臉部表情和語音的情感識別輕量化模型。近年來對於人類的情感識別技術大多使用基於卷積神經網路(Convolutional Neural Network, CNN)的方式來實現,並得到了優秀的成果,然而,這些先進的技術都沒有考慮計算成本的問題,導致這些技術在計算能力有限的設備上無法運行(例如,陪伴型機器人)。因此,本研究將輕量化的GhostNet模型,應用於臉部情感識別的模型,並將輕量化的一維卷積神經網路(One Dimensional Convolutional Neural Network, 1D-CNN)作為語音情感識別模型,再利用幾何平均數的方式將兩個模態預測的結果整合。所提出的模型,在RAVDESS和CREMA-D兩個數據集上分別取得了97.56%及82.33%的準確率,在確保了高準確率的情況下,本研究將參數量壓縮到了0.92M,浮點運算次數減少至0.77G,比起目前已知的先進技術要少了數十倍。最後,將本研究的模型實際部署在Zenbo Junior II中,並透過模型與硬體的運算強度作比較,得知本研究的模型能夠更加順利的在該硬體中運行,且臉部及語音情感識別模型的推理時間分別只有1500毫秒及12毫秒。
  • Item
    用於陪伴型機器人之輕量化深度學習音樂情緒辨識模型
    (2024) 林彥榕; Lin, Yen-Jung
    為了應對現今社會高齡化,導致老人缺乏陪伴導致的孤獨問題,本研究提出用於陪伴型機器人Zenbo Junior II的音樂情緒辨識模型來解決老人孤獨導致的情緒問題。在音樂情緒辨識這個研究領域中,雖然也有很多人已經在進行這項研究,但是這些研究中沒有能用於Zenbo Junior II的輕量化架構。本研究提出的方法是使用一維卷機神經網路(1D-Convolutional Neural Network, 1D-CNN)替換掉常用的2D-CNN並且使用閘門循環單元(Gated Recurrent Unit, GRU)使模型能更好的考慮音頻特徵的連續性。在訓練完模型後儲存並應用於Zenbo Junior II上,先將另一研究的情緒對應成4種情緒後播放音樂調適情緒。本研究提出之模型在PMEmo數據集上Valence和Arousal分別為0.04和0.038與其他模型相比效能最好。並且參數量僅有0.721M浮點運算次數僅有9.303M,遠小於其他相比較之模型。運算強度最靠近Zenbo Junior II之最佳工作點,且模型辨識音樂所需推理時間僅需229毫秒,可以即時辨識出音樂的情緒。這些表明本研究成功提出一個輕量化且效能優異,並且可以在Zenbo Junior II上運行的模型。
  • Item
    用於光學相干斷層掃描之基於深度學習和聯邦學習框架之視網膜層分割技術
    (2024) 張博翔; Chang, Po Hsiang
    在本研究中,我們提出了一種輕量級模型FPENet(α),以FPENet為基底,用於處理專為邊緣設備設計的 OCT 影像中視網膜層分割。視網膜層分割是眼科診斷的重要工具,但其在資源有限的邊緣設備上應用時存在計算成本和精度之間的瓶頸。FedLion(α)在使用 HCMS資料集、NR206資料集及OCT5K資料集進行訓練和測試時,實現了高精度和高效率。該模型經過最佳化,實現了精度和計算成本之間的平衡。FPENet(α)可以有效地捕捉不同尺度的特徵,同時大幅降低計算成本,非常適合部署在如Raspberry Pi等資源有限的邊緣設備上,其輕量化設計使其在計算資源和內存容量方面具有顯著優勢。聯邦學習的部分我們以FedLion為基礎添加了L2正則化與學習率遞減,提出FedLion(α),有效處理數據非獨立同分布的問題。數據顯示使用FPENet(α)與FedLion(α)進行聯邦學習,相較於原先只使用FPENet(α),在HCMS資料集平均DICE係數提升了0.7%,在NR206資料集提升了3.75%,在OCT5K資料集提升了9.1%。
  • Item
    結合雙AI晶片與熱成像溫測模組之自動目標搜索與溫度量測系統
    (2022) 沈方靖; Shen, Fang-Jing
    本論文提出一種自動搜索目標系統,使用雙人工智慧邊緣型運算處理器結合紅外線熱成像感測器,並透過步控制進馬達來實現自動搜索目標且掃瞄範圍擴增的人體溫度測量設備。本文首先回顧深度學習及類神經網路對於影像辨識的起源以及其應用性,並探討邊緣型處理器對於人形偵測的可行性,再根據此基礎發想出測量人體溫度之應用。而後介紹本論文主要系統架構及硬體設備,使用Mipy深度學習AI開發板配合多種感測裝置,來達成AI目標辨識及環境訊息的測量。本系統架構建立於模型本身的可靠性,針對模型訓練的部分有加強描述:從目標圖片的選取及拍攝、訓練過程的流程改善及參數調整、及最後模型在實驗環境的誤判修正。接著將訓練好的模型載入雙Mipy深度學習AI開發板,並制定一套演算法,協調各微處理器間的交互關係,達成快速掃描且穩定測溫的功能。最後針對多個實際場景,驗證本論文所描述之目標以及該架構反應速度與正確性。
  • Item
    基於生成對抗式網路的人臉影像身分重建
    (2021) 屈軒宇; Chiu, Daniel
    基於卷積神經網路的人臉辨識技術已經達成極高的準確率並且廣泛應用於各種場域,然而在特定的應用場合人臉辨識技術還是有很大的挑戰,特別是影像品質不佳的監控設備環境下,人會與鏡頭有較大的距離,導致人臉影像解析度過低造成人臉身分難以辨識,為此我們提出一個新穎的基於生成對抗式網路的人臉影像重建網路,藉由學習低解析度的人臉影像與高解析度的人臉影像之映射關係,我們可以從低解析度人臉影像重建出高解析度人臉影像,此外我們使用Feature Embedding的方法從網路的輸出層得到人臉身分特徵,並且利用三元組損失計算人臉身分特徵用以訓練神經網路,使神經網路可以藉由人臉身分特徵表達做相應的高解析度人臉影像重建,實驗階段我們使用了公開的人臉資料集CASIA-WebFaces進行訓練,並與近年來基於深度學習所提出的底解析度人臉重建方法作為比較並稱為傳統方法。實驗結果表明我們所提出的極低解析度人臉重建網路在大倍率放大的影像品質與辨識率優於傳統方法。
  • Item
    基於卷積神經網路之即時人臉表情辨識
    (2019) 劉耿丞; Liu, Keng-Cheng
    本文提出基於卷積神經網路(Convolution Neural Network, CNN)之即時人臉表情辨識系統,透過所提出之穩定度提升方法,以解決即時人臉表情辨識的不穩定問題。提高人臉表情辨識準確率的方式有許多種,例如:圖片預處理、辨識架構改變等無非都是要讓應用方面的效果更好。本文想解決攝影機在光照等影響下會造成不斷擷取畫面的某些時刻之圖片特徵改變,導致人臉表情在辨識中產生錯誤。由於攝影機的高速擷取影像,圖片與圖片之間時間間隔較小,因此,本文針對於改良LeNet卷積神經網路和Two Stream卷積神經網路架構辨識系統提出不同的方法,前者使用比重平均法,而後者使用統計法,使用提出之方法後對於即時人臉表情辨識整體穩定度及強健性均獲得提升。