學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    用於光學同調斷層掃描之基於深度學習和聯邦學習框架之視網膜積液分割技術
    (2024) 林志韋; Lin, Chih-Wei
    在眼科領域,光學相干斷層掃描(OCT)是檢測眼病的關鍵技術。偏鄉資源有限僅能使用輕量化設備,但其計算能力不足,難以支撐較為大型模型的訓練,以及數據缺乏和隱私問題阻礙醫院數據共享。首先針對輕量化設備,基於LEDNet設計了高效的LEDNet(α)模型,通過調整通道、添加Shuffle Attention模塊和Group Normalization。使用成本低廉的樹莓派5進行訓練,適合偏鄉需求,為解決隱私問題,引入聯邦學習,通過上傳本地模型參數聚合全局模型,避免資料直接上傳。本研究提出Krum(α)算法,在客戶端損失函數中添加近端項並考慮模型自適應性,改善淘汰機制,改進基於歐氏距離淘汰惡意模型的Krum算法。最後實驗結果顯示,在AROI、DUKE、UMN和RETOUCH數據集上,AROI積液類別提高了3.4%,DUKE提高了5.9%,UMN提高了2.4%,RETOUCH提高了1.4%。
  • Item
    用於光學相干斷層掃描之基於深度學習和聯邦學習框架之視網膜層分割技術
    (2024) 張博翔; Chang, Po Hsiang
    在本研究中,我們提出了一種輕量級模型FPENet(α),以FPENet為基底,用於處理專為邊緣設備設計的 OCT 影像中視網膜層分割。視網膜層分割是眼科診斷的重要工具,但其在資源有限的邊緣設備上應用時存在計算成本和精度之間的瓶頸。FedLion(α)在使用 HCMS資料集、NR206資料集及OCT5K資料集進行訓練和測試時,實現了高精度和高效率。該模型經過最佳化,實現了精度和計算成本之間的平衡。FPENet(α)可以有效地捕捉不同尺度的特徵,同時大幅降低計算成本,非常適合部署在如Raspberry Pi等資源有限的邊緣設備上,其輕量化設計使其在計算資源和內存容量方面具有顯著優勢。聯邦學習的部分我們以FedLion為基礎添加了L2正則化與學習率遞減,提出FedLion(α),有效處理數據非獨立同分布的問題。數據顯示使用FPENet(α)與FedLion(α)進行聯邦學習,相較於原先只使用FPENet(α),在HCMS資料集平均DICE係數提升了0.7%,在NR206資料集提升了3.75%,在OCT5K資料集提升了9.1%。
  • Item
    基於YOLO深度學習用於小型漂浮物檢測的新型卷積演算法
    (2023) 沈峻宇; Shen, Jun-Yu
    海洋中的不當廢棄物已導致全球危機,為了緩解這個問題,要在海洋及河流的廢棄物到達環境負荷上限之前對其進行檢測和清理,本研究提出了一種基於 YOLOv4 的算法來檢測河流中的漂流廢棄物,算法結合了改進後的RegP池化層並添加到空間金字塔中的池化層與減少輸出部分的檢測層,以改進特徵提取並防止丟失重要或微小細節,並且針對微小的物品進行檢測。實驗結果中評估了本研究的方法在 FloW和Pascal VOC資料集上的性能,與現今的最先進的技術相比,結果表明提出的方法具有更好的mAP準確率,具體來說,在FloW上分別提升了7.91%和11.36%,並且也與多個在漂流廢棄物檢測的先進方法進行對比,獲得了最佳的準確率,在Pascal VOC上的實驗證實了本研究的方法在不同尺寸大小的物件上的有效性,最後測試了在WIDER FACE上對小尺寸的人臉進行檢測實驗,在準確率上也有一定的提升。本研究提供了一個有前途的解決方案,有助於檢測和清除河流中的廢棄物。