Skip to main content
Communities & Collections
All of DSpace
Statistics
English
العربية
বাংলা
Català
Čeština
Deutsch
Ελληνικά
Español
Suomi
Français
Gàidhlig
हिंदी
Magyar
Italiano
Қазақ
Latviešu
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Српски
Svenska
Türkçe
Yкраї́нська
Tiếng Việt
Log In
Log in
New user? Click here to register.
Have you forgotten your password?
Home
科技與工程學院
電機工程學系
學位論文
學位論文
Permanent URI for this collection
http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890
Browse
Search
By Issue Date
By Author
By Title
By Subject
By Subject Category
Search
By Issue Date
By Author
By Title
By Subject
By Subject Category
1 results
Back to results
Filters
Author
1
search.filters.author.Yueh-Yiing Yang
1
search.filters.author.楊岳穎
Subject
search.filters.subject.k-means分群法
1
search.filters.subject.adaptive feature extraction
1
search.filters.subject.electrocardiogram (ECG)
1
search.filters.subject.k-means clustering
1
search.filters.subject.support vector machines (SVMs)
Show more
Search subject
Submit
Browse subject tree
Date
Start
End
Submit
2010
1
Has files
No
Reset filters
Settings
Sort By
Accessioned Date Descending
Most Relevant
Title Ascending
Date Issued Descending
Results per page
1
5
10
20
40
60
80
100
Search
Has files: No
×
Subject: search.filters.subject.k-means分群法
×
Search Tools
Search Results
Now showing
1 - 1 of 1
No Thumbnail Available
Item
以適應性特徵擷取及改進支持向量機檢測心電圖心律不整
(
2010
)
楊岳穎
;
Yueh-Yiing Yang
Show more
心電圖(ECG)分析是檢測心律不整最好的方法之ㄧ,雖然已經有許多相關的演算法已經被提出,但是可靠性低的訊號特徵提取分析或歸納能力較低的辨識器使得系統的辨識率仍然不能達到要求。本論文提出適應性特徵擷取與改良的支持向量機(SVMs)的心電圖心律不整檢測系統。首先利用小波轉換係數及訊號之振幅或週期等參數作為系統的候選人,針對每一個分類器適應性的擷取出少數特定的特徵;而改良式支持向量機結合k-means分群法與一對一支持向量機,並且修改其投票機制,進一步提高了相似類別之間的辨識率。此心電圖心律不整檢測系統使用了超過100,000筆的MIT-BIH心律不整資料庫樣本進行測試,平均辨識率高達97.96%。
Show more