學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890
Browse
3 results
Search Results
Item Item 結合雙AI晶片與熱成像溫測模組之自動目標搜索與溫度量測系統(2022) 沈方靖; Shen, Fang-Jing本論文提出一種自動搜索目標系統,使用雙人工智慧邊緣型運算處理器結合紅外線熱成像感測器,並透過步控制進馬達來實現自動搜索目標且掃瞄範圍擴增的人體溫度測量設備。本文首先回顧深度學習及類神經網路對於影像辨識的起源以及其應用性,並探討邊緣型處理器對於人形偵測的可行性,再根據此基礎發想出測量人體溫度之應用。而後介紹本論文主要系統架構及硬體設備,使用Mipy深度學習AI開發板配合多種感測裝置,來達成AI目標辨識及環境訊息的測量。本系統架構建立於模型本身的可靠性,針對模型訓練的部分有加強描述:從目標圖片的選取及拍攝、訓練過程的流程改善及參數調整、及最後模型在實驗環境的誤判修正。接著將訓練好的模型載入雙Mipy深度學習AI開發板,並制定一套演算法,協調各微處理器間的交互關係,達成快速掃描且穩定測溫的功能。最後針對多個實際場景,驗證本論文所描述之目標以及該架構反應速度與正確性。Item 以適應性門檻值為基礎應用於物件偵測之 強化切割演算法(2011) 陳俊廷; Chun-Ting Chen物件偵測演算法是應用於智慧型影像系統中的基礎研究,尤其大量被用於智慧型監控系統與智慧型傳輸系統上,目的在於透過有效的偵測物件,使其資訊能夠提供給物件追蹤或辨識等相關應用,提升系統之效能,一般而言,大部分的研究常使用背景相減法,利用畫面之間的差異來擷取物件,而這樣的方式通常需要訂定門檻值將影像中的資訊分類,可是在傳統的作法中,此門檻值通常為定值,所以常需要因為測試環境的不同而重新定義,此外,陰影成份也是一項影響物件偵測演算法準確率的因素之ㄧ,所以在將影像資訊分類後,必須再透過陰影去除相關之演算法,將陰影成份去除以取出正確的物件資訊,所以在本論文中,我們提出一個根據陰影成份的特性分析,以像素點為基礎,個別定義其適應性之門檻值應用於物件偵測之演算法,使物件切割與陰影去除的動作,只要透過一個步驟的強化切割演算法,便能夠即時處理並準確的偵測物件,並且能夠將陰影成份的干擾降到最低,使偵測出來的物件資訊能夠更加的與實際物件吻合,實驗結果顯示,即使是在室內、戶外或是雨天的環境下,透過我們所提出的方法也都能夠快速並有效的偵測物件。