學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890
Browse
2 results
Search Results
Item 基於Transformer之全天空影像進行估計與預測日射量之系統(2023) 謝濟元; Hsieh, Chi-Yuan近年來再生能源發展日益興旺,太陽能作為可持續性發展能源。其發電量與日射量成正關,如能建立一穩定且準確的日射量預測,可加強對緊急狀況之應變能力。在眾多類神經網路類型當中循環神經網路(RNN)已發展多年,其中長短期記憶網路(LSTM)更是被大量使用於具時間序列特性之日射量預測。近年來有學者提出新型態類神經網路模型Transformer,雖其最初目的為語言辨識但因與RNN相似之特性也被大量使用於時間序列之預測。過往之日射量研究多以LSTM為主,然而Transformer模型具有不會梯度爆炸且可同時從多個序列獲取資訊等優點,故本論文嘗試提出一基於Transformer網路為架構之日射量預測模型並以多種效能評估指標與LSTM進行比較。此外,從過往研究可知天氣狀況對日射量有顯著之影響,因此本論文輔以隨機森林(random forest)對數據先進行分類以加強訓練精確度。實驗結果顯示Transformer有不亞於LSTM的預測準確率,在某些指標甚至更勝LSTM。Item 基於超像素分割之衛星雲圖進行預測與估計日射量之系統(2022) 郭家宏; Guo, Jia-Hong由於日射量容易受天氣因素影響而容易產生變化,進而造成太陽能發電量不穩定,因此,難以將其整合入區域電網當中。本文建立一個以超像素分割衛星雲圖為基礎之日射量估計與預測系統。分析衛星雲圖並萃取其雲層特徵,採用光流法,分析雲層運動,生成預測的衛星雲圖。再將這些影像特徵與一些天氣預報特徵作為長短期記憶(LSTM)之輸入,進行日射量的估計與預測。本文使用幾個效能指標來評估估計與預測的效果,包括平均絕對誤差(MAE)、均方根誤差(RMSE)以及判定係數(R^2);並設計數個實驗方法進行比較,實驗結果顯示,本文所提出方法有達到預期的成果。